首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   10篇
物理学   5篇
  2020年   2篇
  2012年   2篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The possible existence of a compensation effect, i.e. concurrent changes in activation energy and prefactor, is investigated for the hydrogenation and dehydrogenation kinetics of metal hydrides, by analyzing a series of reported kinetic studies on Mg and LaNi(5) based hydrides. For these systems, we find a clear linear relation between apparent prefactors and apparent activation energies, as obtained from an Arrhenius analysis, indicating the existence of a compensation effect. Large changes in apparent activation energies in the case of Mg based hydrides are rationalized in terms of a dependency of observed apparent activation energy on the degree of surface oxidation, i.e., a physical effect. On the other hand, we find the large concurrent changes in apparent prefactors to be a direct result of the Arrhenius analysis. Thus, we find the observed compensation effect to be an artifact of the data analysis rather than a physical phenomenon. In the case of LaNi(5) based hydrides, observed scatter in reported apparent activation energies is less pronounced supporting the general experience that LaNi(5) is less sensitive toward surface contamination.  相似文献   
2.
Several experiments indicate that there are atomic tunneling defects in plastically deformed metals. How this is possible has not been clear, given the large mass of the metal atoms. Using a classical molecular-dynamics calculation, we determine the structures, energy barriers, effective masses, and quantum tunneling rates for dislocation kinks and jogs in copper screw dislocations. We find that jogs are unlikely to tunnel, but the kinks should have large quantum fluctuations. The kink motion involves hundreds of atoms each shifting a tiny amount, leading to a small effective mass and tunneling barrier.  相似文献   
3.
The widespread adoption of hydrogen as an energy carrier could bring significant benefits, but only if a number of currently intractable problems can be overcome. Not the least of these is the problem of storage, particularly when aimed at use onboard light-vehicles. The aim of this overview is to look in depth at a number of areas linked by the recently concluded HYDROGEN research network, representing an intentionally multi-faceted selection with the goal of advancing the field on a number of fronts simultaneously. For the general reader we provide a concise outline of the main approaches to storing hydrogen before moving on to detailed reviews of recent research in the solid chemical storage of hydrogen, and so provide an entry point for the interested reader on these diverse topics. The subjects covered include: the mechanisms of Ti catalysis in alanates; the kinetics of the borohydrides and the resulting limitations; novel transition metal catalysts for use with complex hydrides; less common borohydrides; protic-hydridic stores; metal ammines and novel approaches to nano-confined metal hydrides.  相似文献   
4.
The dehydrogenation kinetics of air exposed samples of MgH2/Mg2Cu and MgH2/MgCu2 have been studied with in situ time resolved X-ray powder diffraction. The X-ray setup enabled the recording of full diffraction patterns within 150 s, thereby allowing the study of structural changes combined with simultaneous extraction of kinetic parameters. Phase fractions as a function of time and temperature were derived from series of consecutive diffraction patterns by numerical integration of selected diffraction peaks. The apparent activation energy for the dehydrogenation of the MgH2/Mg2Cu, and MgH2/MgCu2 sample was found to be 108 kJ/mol and 160 kJ/mol, respectively. Furthermore, substantially improved dehydrogenation kinetics of MgH2 and resistance towards oxidation of Mg due to the presence of Mg2Cu/MgCu2 are discussed in relation to previous work. PACS 61.10.Nz; 81.65.Mq; 82.20.Pm  相似文献   
5.
Improving the hydrogen ab- and desorption kinetics in complex hydrides is essential if these materials are to be used as reversible hydrogen storage media in the transport sector. Although reductions in particle size and the addition of titanium based compounds have been found to improve the kinetics significantly, the physical understanding remains elusive. Density functional theory is used to calculate the energy of the potential low energy surfaces of NaAlH(4) to establish the equilibrium particle shape, and furthermore to determine the deposition energy of Ti/TiH(2) and the substitutional energy for Ti@Al and Ti@Na-sites on the exposed facets. The substitutional processes are energetically preferred and the Na-vacancy formation energy is found to be strongly reduced in the presence of Ti. The barrier for H(2) desorption is found to depend significantly on surface morphology and in particular on the presence of Ti, where the activation energy for H(2) desorption on NaAlH(4){001} surfaces can drop to 0.98 eV--in good agreement with the experimentally observed activation energy for dehydrogenation.  相似文献   
6.
The growth and hydrogenation of ultra-thin magnesium overlayers have been investigated on a Mo(1 1 1) single crystal substrate. For increasing magnesium coverages we observe intermediate stages in the TPD and LEISS profiles, which illustrate the transition from one monolayer to multilayer growth. Hydrogen cannot be adsorbed on magnesium films under UHV conditions. However, when evaporating Mg in a hydrogen background, a hydrogen overlayer is seen to adsorb at the Mg surface, due to the catalytic interaction with the Mo(1 1 1) substrate and subsequent spill-over. We show that two monolayers of Mg are necessary to sustain this purely adsorbed state. Using predissociated hydrogen we show that the hydride formation is self-stabilizing and the hydride only decomposes at a temperature where a considerable desorption of magnesium occurs.  相似文献   
7.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi‐electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single‐electron transfer, which are not ideal for multivalent‐ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope‐like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two‐electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g?1 at a current density of 100 mA g?1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg?1 for RMBs and >500 Wh kg?1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   
8.
The development of multivalent metal (such as Mg and Ca) based battery systems is hindered by lack of suitable cathode chemistry that shows reversible multi-electron redox reactions. Cationic redox centres in the classical cathodes can only afford stepwise single-electron transfer, which are not ideal for multivalent-ion storage. The charge imbalance during multivalent ion insertion might lead to an additional kinetic barrier for ion mobility. Therefore, multivalent battery cathodes only exhibit slope-like voltage profiles with insertion/extraction redox of less than one electron. Taking VS4 as a model material, reversible two-electron redox with cationic–anionic contributions is verified in both rechargeable Mg batteries (RMBs) and rechargeable Ca batteries (RCBs). The corresponding cells exhibit high capacities of >300 mAh g−1 at a current density of 100 mA g−1 in both RMBs and RCBs, resulting in a high energy density of >300 Wh kg−1 for RMBs and >500 Wh kg−1 for RCBs. Mechanistic studies reveal a unique redox activity mainly at anionic sulfides moieties and fast Mg2+ ion diffusion kinetics enabled by the soft structure and flexible electron configuration of VS4.  相似文献   
9.
The rate for cross slip of screw dislocations during annihilation of screw dipoles in copper is determined by molecular dynamics simulations. The temperature dependence of the rate is seen to obey an Arrhenius behavior in the investigated temperature range: 225-375 K. The activation energy and the effective attempt frequency can therefore be extracted from the simulations. The transition state energy for the annihilation process is calculated by identifying the transition state using the nudged elastic band path technique. The two activation energies agree very well, indicating that transition state theory is applicable for this type of process.  相似文献   
10.
Understanding the elusive catalytic role of titanium-based additives on the reversible hydrogenation of complex hydrides is an essential step toward developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed effects of doping sodium alanate with TiCl3, and here we study hydrogen dynamics in doped and undoped Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. The hydrogen dynamics is found to be vacancy mediated and dominated by localized jump events, whereas long-range bulk diffusion requires significant activation. The fraction of mobile hydrogen is found to be small for both undoped and doped Na3AlH6, even at 350 K, and improved hydrogen diffusion as a result of bulk-substituted titanium is found to be unlikely. We also propose that previously detected low-temperature point defect motion in sodium alanate could result from vacancy-mediated sodium diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号