首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The quest for higher spatial resolution in scanning electrochemical microscopy (SECM) calls for the application of smaller probe electrodes. When electrodes are to be used in the feedback mode, smaller electrodes require higher intrinsic kinetics at the sample. The fabrication of nanoelectrodes, as well as their use as SECM probes at constant distance, are reported. The properties of shear force regulation system are characterized quantitatively. Simultaneous topography and reactivity imaging were demonstrated using gold microstructures on a glass substrate.  相似文献   
2.
Porous ZnO electrodes on fluorine-doped tin oxide (FTO) were prepared by electrochemical deposition from an O(2)-saturated ZnCl(2) solution in the presence of eosin Y as a structure directing agent (SDA). Sensitization was reached by desorption of the SDA and subsequent adsorption of the indoline dye D149. The influence of film thickness and dye concentration in the films on their photovoltaic characteristics, recombination, and dye regeneration kinetics was investigated. The recombination kinetics was analyzed by time-resolved photovoltage measurements. The dye regeneration by iodide ions in the electrolyte was investigated using scanning electrochemical microscopy (SECM) feedback mode approach curves. Analysis of a SECM kinetic model shows strongly different effective D149 regeneration rate constants k'(ox) for D149-ZnO electrodes of systematically varied film thickness and dye loading. It was found that the short-circuit current density J(sc) and k'(ox) correlated directly with the adsorbed dye concentration. k'(ox) was found to be independent of the dye loading but correlated strongly with the dye concentration in the film or inversely with the film thickness. Furthermore, we discussed the perspective of correlating macroscopic cell characteristics with SECM kinetics data.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号