首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   4篇
化学   26篇
数学   3篇
物理学   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2010年   6篇
  2009年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2000年   2篇
排序方式: 共有30条查询结果,搜索用时 140 毫秒
1.
Summary. The regioselective ring opening of epoxides using elemental iodine and bromine in the presence of o-phenylenediamine as a new catalyst affords vicinal iodo alcohols and bromo alcohols in high yields. The major advantages of this method are versatility, high regioselectivity, a cheap and commercially available catalyst, mild and neutral reaction conditions, and short reaction times. Fourier transform Raman spectroscopy was used to study the reaction of iodine with o-phenylenediamine. The results indicate that the complex [(Diamine)I]+·I5 is formed, and we suggest that the major nucleophile is the pentaiodide ion. This bulky nucleophile has a fundamental role in the high regioselectivity observed attacking the less sterically hindered epoxide carbon.  相似文献   
2.
Effects of nanoscale iron oxide particles on textural structure, reduction, carburization and catalytic behavior of precipitated iron catalyst in Fischer-Tropsch synthesis (FTS) are investigated. Nanostructured iron catalysts were prepared by microemulsion method in two series. Firstly, Fe2O3, CuO and La2O3 nanoparticles were prepared separately and were mixed to attain Fe/Cu/La nanostructured catalyst (sep-nano catalyst); Secondly nanostructured catalyst was prepared by co-precipitation in a water-in-oil microemulsion method (mix-nano catalyst). Also, conventional iron catalyst was prepared with common co-precipitation method. Structural characterizations of the catalysts were performed by TEM, XRD, H2 and CO-TPR tests. Particle size of iron oxides for sep-nano and mix-nano catalysts, which were determined by XRD pattern (Scherrer equation) and TEM images was about 20 and 21.6 nm, respectively. Catalyst evaluation was conducted in a fixed-bed stainless steel reactor and compared with conventional iron catalyst. The results revealed that FTS reaction increased while WGS reaction and olefin/paraffin ratio decreased in nanostructured iron catalysts.  相似文献   
3.
A nano-structured iron catalyst for syngas conversion to hydrocarbons in Fischer-Tropsch synthesis (FTS) was prepared by micro-emulsion method. Compositions of bulk iron phase and phase transformations of carbonaceous species during catalyst deactivation in FTS reaction were characterized by temperature-programmed surface reaction with hydrogen (TPSR-H2), and XRD techniques. Many carbonaceous species on surface and bulk of the nano-structured iron catalysts were completely identified by combined TPSR-H2 and XRD spectra and which were compared with those recorded on conventional co-precipitated iron catalyst. The results reveal that the catalyst deactivation results from the formation of inactive carbide phases and surface carbonaceous species like graphite, and it will be increased when the particle size of iron oxides was reduced in FTS iron catalyst.  相似文献   
4.
This work is aimed at providing physical insights about the interactions of cations, anion, and ion pairs of four imidazolium-based ionic liquids of \(\left[ {{\text{C}}_{\text{n}} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) with varying alkyl chain lengths (n = 2, 4, 6, and 8) using both DFT calculations and vibrational spectroscopic measurements (IR absorption and Raman scattering) in the mid- and far regions. The calculated Mulliken charge distributions of \(\left[ {{\text{C}}_{\text{n}} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) ion pairs indicate that hydrogen-bonding interactions between oxygen and nitrogen atoms (more negative charge) on \(\left[ {{\text{NTF}}_{2} } \right]^{ - }\) anion and the hydrogen atoms (more positive charge) on the imidazolium ring play a dominating role in the formation of ion pair. Thirteen stable conformers of \(\left[ {{\text{C}}_{2} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) were optimized. According to our results, the strongest and weakest hydrogen bonds were existing in \(\left[ {{\text{C}}_{2} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) and \(\left[ {{\text{C}}_{8} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\), respectively. A redshift of 290, 262, 258, and 257 cm?1 has been observed for cations involving \(\left[ {{\text{C}}_{2} {\text{mim}}} \right]^{ + }\), \(\left[ {{\text{C}}_{4} {\text{mim}}} \right]^{ + }\),\(\left[ {{\text{C}}_{6} {\text{mim}}} \right]^{ + }\), and stretching vibrations of \({\text{C}}12{-}{\text{H}}3\), respectively. By increasing the chain length, the strength of hydrogen bonds decreases as a result of \({\text{C}}12{-}{\text{H}}3\) bond elongation and less changes are observed in stretching vibrations of \({\text{C}}12{-}{\text{H}}3\) compared to the free cations. To the best of our knowledge, this research is the first work which reports the far-IR of \(\left[ {{\text{C}}_{4} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\), \(\left[ {{\text{C}}_{6} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\), and \(\left[ {{\text{C}}_{8} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) and the mid-IR of \(\left[ {{\text{C}}_{8} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\).  相似文献   
5.
Structural Chemistry - Density functional theory (DFT) calculations were used to study the mechanism of water gas shift (WGS) reaction on Ni (111) surfaces. Three sets of elementary reactions based...  相似文献   
6.
Benzene and methanol make a minimum boiling point homogeneous binary azeotrope with the mole ratio 2:3. Some characteristic vibrational modes, as well as 1H NMR signals change due to the azeotrope formation. The extend of interaction of these molecules causes significant changes on some vibrational modes involved, and 1H NMR signals show some changes on their position. No IR, Raman, and NMR spectra have been reported for this constant boiling mixture, also there has not been any attempt to investigate the unit-structure of this azeotrope. In this work the FTIR, FT-Raman, and 1H NMR spectra of pure benzene, pure methanol, and corresponding azeotrope were recorded, mutual influences resulting from azeotrope formation have been analyzed, and spectral changes has been discussed. The unit-structure of cluster has been deduced based on mole ratio, boiling point depression of constituents, and comparison among the spectra obtained by FTIR, FT-Raman, and 1H NMR techniques.  相似文献   
7.
The infrared and Raman spectra of acetylacetone and its deuterated analogues have been analyzed by the aid of ab initio calculations at post Hartree-Fock level and considering the spectral behavior upon deuteration. By deconvolution of the infrared spectra of acetylacetone and d6-acetylacetone at 1600 cm(-1) region a broad and strong band is found and correlated with the strong Raman lines observed for these compounds in this region. The broadness of this infrared band at room temperature and it's splitting at low temperature is attributed to free rotation of methyl group attached to carbonyl group at room temperature. Furthermore it is found that all ring modes in 1200-1600 cm(-1) region more or less are mixed with the OH in plane bending motion.  相似文献   
8.
Molecular structure and vibrational frequencies of 4,4,4-trifluoro-1-phenyl-1,3-butanedione, known as trifluorobenzoylacetone (TFBA), have been investigated by means of density functional theory (DFT) calculations. The results were compared with those of benzoylacetone (BA), acetylacetone (AA), and trifluoroacetylacetone (TFAA). Comparing the calculated and experimental band frequencies and intensities suggests coexisting of both stable cis-enol conformers in comparable proportions in the sample. The energy difference between the two stable chelated enol forms is negligible, 0.96 kcal/mol, calculated at B3LYP/6-311++G** level of theory. The molecular stability and the hydrogen bond strength were investigated by applying the natural bond orbital (NBO) theory and geometry calculations. The theoretical calculations and spectroscopic results indicate that the hydrogen bond strength of TFBA is between those of TFAA and AA, considerably weaker than that of BA.  相似文献   
9.
Molecular and vibrational structure of 1,1,1,6,6,6-hexafluoropentane-2,4-dione (hexafluoro-acetylacetone) have been investigated by means of density functional theory (DFT) calculations and have been compared with those of acetylacetone, the parent molecule. According to the theoretical calculations HFAA has an asymmetric structure with hydrogen bond strength of about 12 kcal mol(-1), about 6 kcal mol(-1) less than that of acetylacetone. This weakening of hydrogen bond is consistent with frequency shifts for OH/OD stretching, OH/OD out of plane bending and O...O stretching modes upon substitution of methyl hydrogen atoms with fluorine atoms. The symmetric structure based on electron diffraction data is interpreted as superposition of two asymmetric structures.  相似文献   
10.
Molecular structure and vibrational frequencies of triformylmethane have been investigated by means of density functional theory (DFT) calculations. The geometrical parameters and vibrational frequencies obtained in the B3LYP, B3PW91, BLYP, BPW91, G96LYP and G96PW91 levels of DFT and compared with the corresponding parameters of malonaldehyde (MA). Fourier transform infrared spectra of triformylmethane and its deuterated analogue were clearly assigned. Theoretical calculations show that the hydrogen bond strength of triformylmethane is stronger than that of MA, which is in agreement with spectroscopic results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号