排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
Gunawan O Gokmen T Shkolnikov YP De Poortere EP Shayegan M 《Physical review letters》2008,100(3):036602
An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field. 相似文献
2.
3.
Tayfun E. Tezduyar 《国际流体数值方法杂志》2009,60(11):1289-1290
Some comments are provided on the citations offered in a recent paper (M. Behr, Int. J. Numer. Meth. Fluids 2008; 57 :1421–1434) that describes space–time finite element computations of advection of ‘Gaussian hills’, including computations with mesh refinement in the time direction. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
Adsorption of water vapour on wool provides not only textile comfort, but also convenience in transportation due to increase in its bulk density. The adsorption and desorption isotherms of water vapour for wool were determined by both volumetric technique using a Coulter Omnisorp 100CX instrument and gravimetric method employing a Cahn 2000 electronic microbalance. Adsorption isotherm fitting to B.E.T. model and hysteresis on desorption was observed. The average effective diffusion coefficient of water in wool was found to be 8.4 × 10-14 m2s-1 at 25°C from gravimetric data. The effects of packing height and air velocity on the breakthrough curves were also investigated in the wool packed columns. For pseudo first order model, k values changing between 0.33 × 10-6 – 69 × 10-6 s-1 was obtained for 2.2–6.4 cm s-1 air velocity and 0.05–0.20 m packing height ranges. 相似文献
5.
Babadagli T 《Journal of colloid and interface science》2002,246(1):203-213
Capillary imbibition is an oil recovery mechanism in naturally fractured reservoirs if rock matrix is water wet and there is enough water in fractures in contact with matrix. It, however, may not yield an effective recovery under certain circumstances even if these conditions are maintained. Heavy matrix oil, high interfacial tension (IFT), oil-wet matrix sample, and limited contact area of matrix with water in fractures require additional effort to enhance the oil recovery by capillary imbibition. Chemicals and heat can be injected into naturally fractured reservoirs to improve the capillary imbibition recovery performance. With the involvement of low IFT fluid, heat, and polymer solution in the process, capillary imbibition dynamics may change and this entails an identification of the dynamics of the process through laboratory experiments before injection of these expensive fluids into oil reservoirs. In this study, the dynamics of capillary imbibition was studied experimentally. Static imbibition experiments were conducted on oil- and water-wet rock samples under different boundary conditions and saturated with different types of oil. The analyses were conducted using three indicators, namely the capillary imbibition rate, ultimate oil recovery, and shape of the recovery profile. Based on these indicators, the dynamics of capillary imbibition of different aqueous phases were evaluated for different oil types and matrix properties. The conditions that cause weak or strong capillary imbibition were identified. 相似文献
6.
7.
Gunawan O Shkolnikov YP Vakili K Gokmen T De Poortere EP Shayegan M 《Physical review letters》2006,97(18):186404
We report direct measurements of the valley susceptibility, the change of valley population in response to an applied symmetry-breaking strain, in an AlAs two-dimensional electron system. As the two-dimensional density is reduced, the valley susceptibility dramatically increases relative to its band value, reflecting the system's strong electron-electron interaction. The increase has a remarkable resemblance to the enhancement of the spin susceptibility and establishes the analogy between the spin and valley degrees of freedom. 相似文献
8.
Most of the techniques developed for infrared (IR) image enhancement (IE) depend heavily on the scene, environmental conditions, and the properties of the imaging system. So, with a set of predefined scenario properties, a content-based IR-IE technique can be developed for better situational awareness. This study proposes an adaptive IR-IE technique based on clustering of wavelet coefficients of an image for sea surveillance systems. Discrete wavelet transform (DWT) of an image is computed and feature vectors are constructed from subband images. Clustering operation is applied to group similar feature vectors that belong to different scene components such as target or background. Depending on the feature vectors, a weight is assigned to each cluster and these weights are used to compute gain matrices which are used to multiply wavelet coefficients for the enhancement of the original image. Enhancement results are presented and a comparison of the performance of the proposed algorithm is given through subjective tests with other well known frequency and histogram based enhancement techniques. The proposed algorithm outperforms previous ones in the truthfulness, detail visibility of the target, artificiality, and total quality criteria, while providing an acceptable computational load. 相似文献
9.
Oil saturated cylindrical sandstone cores were placed into imbibition cells where they contacted with an aqueous phase and oil recovery performances were tested with and without ultrasonic radiation keeping all other conditions and parameters constant. Experiments were conducted for different initial water saturation, oil viscosity and wettability. The specifications of acoustic sources such as ultrasonic intensity (45–84 W/sq cm) and frequency (22 and 40 kHz) were also changed. An increase in recovery was observed with ultrasonic energy in all cases. This change was more remarkable for the oil-wet medium. The additional recovery with ultrasonic energy became lower as the oil viscosity increased. We also designed a setup to measure the ultrasonic energy penetration capacity in different media, namely air, water, and slurry (sand + water mixture). A one-meter long water or slurry filled medium was prepared and the ultrasonic intensity and frequency were monitored as a function of distance from the source. The imbibition cells were placed at certain distances from the sources and the oil recovery was recorded. Then, the imbibition recovery was related to the ultrasonic intensity, frequency, and distance from the ultrasonic source. 相似文献
10.
Murat Kocaoglu Nail Bulakbasi Hatice T. Sanal Erol Kismet Bahadir Caliskan Veysel Akgun Cem Tayfun 《Magnetic resonance imaging》2010