首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
物理学   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We report on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from anti-aflatoxin B1 antibody (immobilized on the shell of CdTe quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The highly specific immunoreaction between the antibody against aflatoxin B1 on the QDs and the labeled-aflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photoexcitation of the QDs. In the absence of unlabeled aflatoxin B1, the antigen-antibody complex is stable, and strong emission resulting from the FRET from QDs to labeled aflatoxin B1 is observed. In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed. The reduction in the fluorescence intensity of the acceptor correlates well with the concentration of aflatoxin B1. The feasibility of the method was established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the increased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spike human serum, over the range of 0.1–0.6 μmol·mL?1. The limit of detection is 2?×?10?11 M. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require excessive washing and separation steps.
Figure
A nanobiosensor has been fabricated based on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET). In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed.  相似文献   
2.
Organophosphorus (OP) compounds are extensively used in agricultural practice for pest management. However, their residues have a long half-life in the ecosystem as well as in the agro-products, posing a serious threat to human and animal health. Aryldialkylphosphatase (EC 3.1.8.1) is widely used in detoxification procedures. In the present study, aryldialkylphosphatase was immobilised on synthesised cross-linked nano-sized gel particles, also known as nanogels, in order to enhance the enzyme’s physicochemical properties. Accordingly, a new nanogel consisting of chitosan and myristic acid (CMA nanogel) was synthesised and characterised by way of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The aryldialkylphosphatase-CMA nanogel conjugate was then assayed by FTIR, and its physicochemical characteristics were also investigated. The data obtained from SEM and TEM showed the nanogels to be homogenous spherical particles less than 50 nm in diameter. The proper formation of the nanogel and nanobioconjugate was also confirmed by FTIR spectra. In comparison with the free enzyme, the pH and thermal stability of the aryldialkylphosphatase were enhanced by the covalent immobilisation. Moreover, the immobilised enzyme could maintain approximately half of its activity over more than one month. The kinetic parameters of the aryldialkylphosphatase-CMA nanogel conjugate were also shown to undergo remarkable improvements, hence the synthesised CMA-nanogel could act as a promising support for aryldialkylphosphatase immobilisation. It is suggested that the aryldialkylphosphatase-CMA nanogel could be used for detoxifying paraoxon; a nerve agent. Further clinical experiments are underway.  相似文献   
3.
A dimeric organophosphorus hydrolase (OPH; EC 3.1.8.1; 72 kDa) was isolated from wild-type bacteria, analyzed for its 16s rRNA sequence, purified, and immobilized on gold nanoparticles (AuNPs) to form the transducer part of a biosensor. The isolated strain was identified as Pseudomonas aeruginosa. The AuNPs were characterized by transmission electron microscopy and localized surface plasmon resonance. Covalent binding of OPH to the AuNPs was confirmed by spectrophotometry, enzymatic activity assays, and FTIR spectroscopy. Coumarin 1, a competitive inhibitor of OPH, was used as a fluorogenic probe. The bioconjugates quench the emission of coumarin 1 upon binding, but the addition of paraoxon results in an enhancement of fluorescence that is directly proportional to the concentration of paraoxon. The gold-OPH conjugates were then used to determine paraoxon in serum samples spiked with varying levels of paraoxon. The method works in the 50 to 1,050 nM concentration range, has a low standard deviation (with a CV of 5.7–11 %), and a detection limit as low as 5?×?10?11 M.
Figure
Coumarin 1, a competitive inhibitor of organophosphorus hydrolase, was used as a fluorogenic probe in the bioconjugates. The gold nanoparticles contained in the bioconjugates quench the emission of coumarin 1 upon binding, but the addition of paraoxon results in an enhancement of fluorescence leading to its detection.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号