首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
化学   8篇
物理学   6篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
排序方式: 共有14条查询结果,搜索用时 156 毫秒
1.
MnO2 nanoparticles and its nanocomposite with nitrogen-doped graphene (NG) have been fabricated via simple hydrothermal synthesis procedure using water as a solvent. X-ray diffraction (XRD) analysis of the as-prepared samples was used to ascertain the phase purity and crystallite size. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to study the surface features and particle size of the synthesised samples. The photocatalytic ability of the methyl orange (MO) dye with bare MnO2 and its hybrid with nitrogen-doped graphene (NG-MnO2) wer compared with visible light prompted degradation of the dye in absence of these catalysts. The prepared nanohybrid (NG-MnO2) showed improved photocatalytic efficacy as compared to the pure MnO2 nanoparticles. The strong ferromagnetic character of nanohybrid helps in easy separation of catalyst even with a bar magnet.  相似文献   
2.
3.
We report theoretical results on the magnetic behavior of free standing nanowires of Ti. Four different structures of Ti nanowires-linear, ladder, dimerized, and zigzag-with nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations were considered. Exploration of magnetism in these atomic chains leads to ferromagnetic behavior for all the structures: zigzag structure shows almost degenerate ferromagnetic and anti-ferromagnetic states though. The zigzag structure of Ti nanowires is favored of all for low values of nearest neighbor distances, whereas the dimerized structure is favored at larger atomic separations. Our work helps to resolve the controversy in the predicted ground state magnetic nature of zigzag chains of Ti as reported in recent previous works. The maximum value of magnetic moment (0.93 μB/atom) occurs in the ladder chains while the zigzag chains show the minimum value (0.17 μB/atom). Interestingly, all the structures in the magnetic configuration show metastable state except the dimerized structure. Ferromagnetic dimerized nanowires seem to be a potential candidate for use in spintronics. The projected density of states shows that dx2y2 and dxy bands play a leading role in magnetism of linear and ladder structures, whereas there is no outstanding contribution from a particular d-orbital for zigzag and dimerized nanowires. The charge density plots suggest that linear and zigzag structures have metallic bonding whereas covalent bonding is predominant in the dimerized and ladder structures. The estimated diameters for the favored ferromagnetic configuration of these ultrathin nanowires lie in the range 1.9-3.4 Å and indicate the instability of the ladder structure, as also projected by the relative cohesive energy and relative break force values.  相似文献   
4.
We investigate the pathway of thinning process for transient [110] nanowires (NWs) of Ag. The result is in good agreement with experimental observations. An unambiguous identification of the structure of a NW requires at least two views along different directions. In the cases where two views of different NW structures are practically the same for very thin NWs which pose experimental difficulty due to small signal-to-noise ratio, our theoretical analysis helps distinguish these structures. On the basis of conductance (G) calculations vis-á-vis the structure of transient NWs, the puzzling experimental observation of fractionally quantized G values is explained by considering the existence of mixed structures for thin wires.  相似文献   
5.
On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.  相似文献   
6.
This detailed and systematic theoretical study on the behavior of basic low dimensional (one- and two-dimensional) systems of early 3d transition metals should serve as a guideline to experimentalists as well as to theoreticians. We find that, lowering of dimensionality is favorable for emergence of magnetic ordering in all the systems studied, except Ti monolayers (MLs). For Ti MLs, both nonmagnetic and ferromagnetic states are degenerate within the numerical limits. For such a case, the interactions with substrate would play a decisive role in the magnetic ordering of the atoms in the ML. The total energy calculations show that the nonmagnetic and ferromagnetic states are almost degenerate for Cr and V MLs too; however, anti-ferromagnetic ordering is favored in these. The ferromagnetic ordering in Sc linear chains and anti-ferromagnetic ordering in MLs of Mn and Cr are found to be favored by a relatively larger margin showing good stability. Some low dimensional systems, showing electrons with only one kind of spin available at Fermi energy, may be suitable for spintronics related applications. The linear chains of Cr and Mn, and MLs of Sc are likely to form stable magnetic nanosystems as these exhibit almost saturated magnetic moment per atom around the equilibrium separation. The magnetic moment strengthens considerably as one goes from two- to one-dimension. Our results are supported qualitatively by available experimental results and offer a good insight into these nanosystems.  相似文献   
7.
Lipophilic extracts from flowers, leaves, and roots of Lamiophlomis rotata (Benth.) were analyzed using GC-MS. A total of 67 compounds were identified. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 423–425, September–October, 2006.  相似文献   
8.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   
9.
10.
Journal of Radioanalytical and Nuclear Chemistry - Low enriched uranium samples of unknown origin were analyzed by 16 laboratories in the context of a Collaborative Materials Exercise (CMX),...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号