首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   13篇
  国内免费   2篇
化学   194篇
晶体学   3篇
力学   5篇
数学   18篇
物理学   57篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   11篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   10篇
  2015年   14篇
  2014年   9篇
  2013年   24篇
  2012年   15篇
  2011年   18篇
  2010年   15篇
  2009年   9篇
  2008年   20篇
  2007年   17篇
  2006年   15篇
  2005年   14篇
  2004年   15篇
  2003年   13篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
1.
Laser photolysis of benzoyl radical precursors (such as PhCOC[OH]R2) in oxygen-containing solutions leads to a laser-specific cascade of oxidative events in which benzoyl peroxyl radicals undergo self-reaction, ultimately leading to the sequential formation of benzoyloxyl, phenyl and phenyl peroxyl radicals. Thus, photoreactions producing benzoyl (PheO) radicals lead to PhĊO under conditions where benzoyl radicals do not decarbonylate. These reactions require the high-intensity conditions that can only be achieved under pulsed laser excitation; yet, they do not involve any multiphoton processes. Type I mechanisms of this type may be of importance as new laser-based therapeutic technologies are developed.  相似文献   
2.
Nitrile hydratase (NHase) is an iron-containing metalloenzyme that converts nitriles to amides. The mechanism by which this biochemical reaction occurs is unknown. One mechanism that has been proposed involves nucleophilic attack of an Fe-bound nitrile by water (or hydroxide). Reported herein is a five-coordinate model compound ([Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+)) containing Fe(III) in an environment resembling that of NHase, which reversibly binds a variety of nitriles, alcohols, amines, and thiocyanate. XAS shows that five-coordinate [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) reacts with both methanol and acetonitrile to afford a six-coordinate solvent-bound complex. Competitive binding studies demonstrate that MeCN preferentially binds over ROH, suggesting that nitriles would be capable of displacing the H(2)O coordinated to the iron site of NHase. Thermodynamic parameters were determined for acetonitrile (DeltaH = -6.2(+/-0.2) kcal/mol, DeltaS = -29.4(+/-0.8) eu), benzonitrile (-4.2(+/-0.6) kcal/mol, DeltaS = -18(+/-3) eu), and pyridine (DeltaH = -8(+/-1) kcal/mol, DeltaS = -41(+/-6) eu) binding to [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) using variable-temperature electronic absorption spectroscopy. Ligand exchange kinetics were examined for acetonitrile, iso-propylnitrile, benzonitrile, and 4-tert-butylpyridine using (13)C NMR line-broadening analysis, at a variety of temperatures. Activation parameters for ligand exchange were determined to be DeltaH(+ +) = 7.1(+/-0.8) kcal/mol, DeltaS(+ +) = -10(+/-1) eu (acetonitrile), DeltaH(+ +) = 5.4(+/-0.6) kcal/mol, DeltaS(+ +) = -17(+/-2) eu (iso-propionitrile), DeltaH(+ +) = 4.9(+/-0.8) kcal/mol, DeltaS(+ +) = -20(+/-3) eu (benzonitrile), and DeltaH(+ +) = 4.7(+/-1.4) kcal/mol DeltaS(+ +) = -18(+/-2) eu (4-tert-butylpyridine). The thermodynamic parameters for pyridine binding to a related complex, [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))](+) (DeltaH = -5.9(+/-0.8) kcal/mol, DeltaS = -24(+/-3) eu), are also reported, as well as kinetic parameters for 4-tert-butylpyridine exchange (DeltaH(+ +) = 3.1(+/-0.8) kcal/mol, DeltaS(+ +) = -25(+/-3) eu). These data show for the first time that, when it is contained in a ligand environment similar to that of NHase, Fe(III) is capable of forming a stable complex with nitriles. Also, the rates of ligand exchange demonstrate that low-spin Fe(III) in this ligand environment is more labile than expected. Furthermore, comparison of [Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+) and [Fe(III)(S(2)(Me2)N(3)(Pr,Pr))](+) demonstrates how minor distortions induced by ligand constraints can dramatically alter the reactivity of a metal complex.  相似文献   
3.
We have examined the behavior of radical pairs derived by hydrogen abstraction of triplet benzophenone and some of its derivatives from bovine serum albumin, human serum albumin and calf thymus DNA. They have been investigated by means of nanosecond laser flash photolysis techniques. The dynamics of radical pair behavior are shown to be sensitive to external magnetic fields; these effects are interpreted using the established model for the influence of magnetic fields on radical pairs in micellar aggregates, in which intersystem crossing of the radical pair is slowed by the external magnetic field. Our results indicate that proteins and DNA can confine the radicals for a sufficiently long period of time for spin evolution to be affected by external fields. In proteins the radical pair retains its geminate character ( i.e . remains confined) for about 0.5–1 μs. Interestingly, the magnetic field effects observed in proteins and in DNA seem to occur in distinct timescales; for example, for 2,3,4,5,6-pentafluorobenzophenone bound to DNA, the magnetic field alters the radical reactivity only over times ≤50 ns, suggesting poor confinement. The timescale for these effects can be increased by promoting Coulombic attraction between DNA and the radical precursor. Electron transfer interactions play a role in the case of DNA.  相似文献   
4.
Upconverted yellow singlet fluorescence from rubrene (5,6,11,12-tetraphenylnapthacene) was generated from selective excitation (lambdaex = 725 nm) of the red light absorbing triplet sensitizer palladium(II) octabutoxyphthalocyanine, PdPc(OBu)8, in vacuum degassed toluene solutions using a Nd:YAG/OPO laser system in concert with gated iCCD detection. The data are consistent with upconversion proceeding from triplet-triplet annihilation (TTA) of rubrene acceptor molecules. The TTA process was confirmed by the quadratic dependence of the upconverted delayed fluorescence intensity with respect to incident light, measured by integrating the corresponding kinetic traces as a function of the incident excitation power. In vacuum degassed toluene solutions, the red-to-yellow upconversion process is stable under continuous long wavelength irradiation and is readily visualized by the naked eye even at modest laser fluence (0.6 mJ/pulse). In aerated solutions, however, selective excitation of the phthalocyanine sensitizer leads to rapid decomposition of rubrene into its corresponding endoperoxide as evidenced by UV-vis (in toluene), 1H NMR (in d6-benzene), and MALDI-TOF mass spectrometry, consistent with the established reactivity of rubrene with singlet dioxygen. The upconversion process in this triplet sensitizer/acceptor-annihilator combination was preliminarily investigated in solid polymer films composed of a 50:50 mixture of an ethyleneoxide/epichlorohydrin copolymer, P(EO/EP). Films that were prepared under an argon atmosphere and maintained under this inert environment successfully achieve the anticipated quadratic incident power dependence, whereas air exposure causes the film to deviate somewhat from this dependence. To the best of our knowledge, the current study represents the first example of photon upconversion using a phthalocyanine triplet sensitizer, furthering the notion that anti-Stokes light-producing sensitized TTA appears to be a general phenomenon as long as proper energy criteria are met.  相似文献   
5.
Journal of Thermal Analysis and Calorimetry - This work is a continuation of our researches on the study of thermodynamic properties of organic compound mixtures and made...  相似文献   
6.
Composition-controlled synthesis of bimetallic gold-silver nanoparticles   总被引:1,自引:0,他引:1  
This paper reports findings of an investigation of the synthesis of monolayer-capped binary gold-silver (AuAg) bimetallic nanoparticles that is aimed at understanding the control factors governing the formation of the bimetallic compositions. The synthesis of alkanethiolate-capped AuAg nanoparticles was carried out using two related synthetic protocols using aqueous sodium borohydride as a reducing agent. One involves a two-phase reduction of AuCl(4)(-), which is dissolved in organic solution, and Ag(+), which is dissolved in aqueous solution. The other protocol involves a two-phase reduction of AuCl(4)(-) and AgBr(2)(-), both of which are dissolved in the same organic solution. AuAg nanoparticles of 2-3 nm core sizes with different compositions in the range of 0-100% Au have been synthesized. The two synthetic routes were compared in terms of bimetallic composition and size properties. Our new findings have allowed us to establish the correlation between synthetic feeding of metals and metal compositions in the bimetallic nanoparticles, which have important implications to the exploration of gold-based bimetallic nanoparticles for constructing sensing and catalytic nanomaterials.  相似文献   
7.
The subcomponent self‐assembly of a bent dialdehyde ligand and different cationic and anionic templates led to the formation of two new metallosupramolecular architectures: a FeII4L6 molecular rectangle was isolated following reaction of the ligand with iron(II) tetrafluoroborate, and a M5L6 trigonal bipyramidal structure was constructed from either zinc(II) tetrafluoroborate or cadmium(II) trifluoromethanesulfonate. The spatially constrained arrangement of the three equatorial metal ions in the M5L6 structures was found to induce small‐molecule transformations. Atmospheric carbon dioxide was fixed as carbonate and bound to the equatorial metal centers in both the Zn5L6 and Cd5L6 assemblies, and sulfur dioxide was hydrated and bound as the sulfite dianion in the Zn5L6 structure. Subsequent in situ oxidation of the sulfite dianion resulted in a sulfate dianion bound within the supramolecular pocket.  相似文献   
8.
A set of three potentially bridging ligands containing two tridentate chelating N,N',O-donor (pyrazole-pyridine-amide) donors separated by an o, m, or p-phenylene spacer has been prepared and their coordination chemistry with lanthanide(III) ions investigated. Ligand L(1) (p-phenylene spacer) forms complexes with a 2:3 M:L ratio according to the proportions used in the reaction mixture; the Ln(2)(L(1))(3) complexes contain two 9-coordinate Ln(III) centres with all three bridging ligands spanning both metal ions, and have a cylindrical (non-helical) 'mesocate' architecture. The 1:1 complexes display a range of structural types depending on the conditions used, including a cyclic Ln(4)(L(1))(4) tetranuclear helicate, a Ln(2)(L(1))(2) dinuclear mesocate, and an infinite one-dimensional coordination polymer in which metal ions and bridging ligands alternate along the sequence. ESMS studies indicate that the 1:1 complexes form a mixture of oligonuclear species {Ln(L(1))}(n) in solution (n up to 5) which are likely to be cyclic helicates. In contrast, ligands L(2) and L(3) (with o- and m-phenylene spacers, respectively) generally form dinuclear Ln(2)L(2) Ln(III) complexes in which the two ligands may be arranged in a helical or non-helical architecture about the two metal ions. These complexes also contain an additional exogenous bidentate bridging ligand, either acetate or formate, which has arisen from hydrolysis of solvent molecules promoted by the Lewis-acidity of the Ln(III) ions. Luminescence studies on some of the Nd(III) complexes showed that excitation into ligand-centred pi-pi* transitions result in the characteristic near-infrared luminescence from Nd(III) at 1060 nm.  相似文献   
9.
Organic semiconductors are promising for efficient, printable optoelectronics. However, strong excited-state quenching due to uncontrolled aggregation limits their use in devices. We report on the self-assembly of a supramolecular pseudo-cube formed from six perylene diimides (PDIs). The rigid, shape-persistent cage sets the distance and orientation of the PDIs and suppresses intramolecular rotations and vibrations, leading to non-aggregated, monomer-like properties in solution and the solid state, in contrast to the fast fluorescence quenching in the free ligand. The stabilized excited state and electronic purity in the cage enables the observation of delayed fluorescence due to a bright excited multimer, acting as excited-state reservoir in a rare case of benign inter-chromophore interactions in the cage. We show that self-assembly provides a powerful tool for retaining and controlling the electronic properties of chromophores, and to bring molecular electronics devices within reach.  相似文献   
10.
The use of di(2-pyridyl)ketone in subcomponent self-assembly is introduced. When combined with a flexible triamine and zinc bis(trifluoromethanesulfonyl)imide, this ketone formed a new Zn4L4 tetrahedron 1 bearing twelve uncoordinated pyridyl units around its metal-ion vertices. The acid stability of 1 was found to be greater than that of the analogous tetrahedron 2 built from 2-formylpyridine. Intriguingly, the peripheral presence of additional pyridine rings in 1 resulted in distinct guest binding behavior from that of 2 , affecting guest scope as well as binding affinities. The different stabilities and guest affinities of capsules 1 and 2 enabled the design of systems whereby different cargoes could be moved between cages using acid and base as chemical stimuli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号