首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   3篇
  国内免费   2篇
化学   141篇
力学   2篇
数学   22篇
物理学   22篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   10篇
  2011年   16篇
  2010年   10篇
  2009年   10篇
  2008年   26篇
  2007年   25篇
  2006年   21篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1968年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
1.
2.
3‐Miktoarm star copolymers, 3μ‐D2V, with two poly(dimethylsiloxane) (PDMS) and one poly(2‐vinylpyridine) (P2VP) arm, were synthesized by using anionic polymerization–high vacuum techniques and (chloromethylphenylethyl)methyl dichlorosilane, heterofunctional linking agent, with two SiCl groups and one CH2Cl group. The synthetic strategy involves the selective reaction of the two ? SiCl groups with PDMSOLi living chains, followed by reaction of the remaining chloromethyl group with P2VPLi. Combined molecular characterization results (size exclusion chromatography, membrane osmometry, and 1H NMR spectroscopy) revealed a high degree of structural and compositional homogeneity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 614–619, 2006  相似文献   
3.
Emission from high-energy-electron-irradiated golden hamster embryo (GHE) cells has been studied over the temperature range 12–300 K both by a one-shot-single-photon-counting method and by photocurrent measurements with an oscilloscope. Emission from the irradiated phosphate buffered saline (PBS) also has been studied. The emission spectra from PBS at 12 and 77 K show a maximum around 330 and 380 nm, respectively, which are the same spectra as those from irradiated pure H2O. The emission from irradiated GHE consists of the new band at 480 nm in addition to the emission from H2O. The 480 nm emission is observed at the temperature range of 12–300 K, though the emission at 300 K is much lower than that at low temperature. The 480 nm emission is ascribed to the transition from excited organic substances in GHE cells. The intensity of 480 nm emission at 300 K increases linearly with increasing irradiation-dose in the range of 11–600 Gy.  相似文献   
4.
In the reaction of the N-substituted diethanolamines (H(2)L(1-3)) (1-3) with calcium hydride followed by addition of iron(III) or indium(III) chloride, the iron wheels [Fe(6)Cl(6)(L(1))(6)] (4) and [Fe(6)Cl(6)(L(2))(6)] (6) or indium wheels [In(6)Cl(6)(L(1))(6)] (5), [In(6)Cl(6)(L(2))(6)] (8) and [In(6)Cl(6)(L(3))(6)] (9) were formed in excellent yields. Exchange of the chloride ions of 6 by thiocyanate ions afforded [Fe(6)(SCN)(6)(L(2))(6)] (7). Whereas the structures of 4, 5 and 7 were determined unequivocally by single-crystal X-ray analyses, complexes 8 and 9 were characterised by NMR spectroscopy. Contrary to what is normally presumed, the scaffolds of six-membered metallic wheels are not generally rigid, but rather undergo nondissociative topomerisation processes. This was shown by variable temperature (VT) (1)H NMR spectroscopy for the indium wheel [In(6)Cl(6)(L(1))(6)] (5) and is highlighted for the enantiotopomerisation of one indium centre [ 1/6[S(6)-5]<==>[1/6[S(6)-5']]. The self-assembly of metallic wheels, starting from diethanolamine dendrons, is an efficient strategy for the convergent synthesis of metallodendrimers.  相似文献   
5.
A low-temperature discharge nozzle source with a liquid-N(2) circulator for He*(2(3)S) metastable atoms has been developed in order to obtain the state-resolved collision energy dependence of Penning ionization cross sections in a low collision energy range from 20 to 80 meV. By controlling the discharge condition, we have made it possible to measure the collision energy dependence of partial ionization cross sections (CEDPICS) for a well-studied system of CH(3)CN+He*(2(3)S) in a wide energy range from 20 to 350 meV. The anisotropic interaction potential energy surface for the present system was obtained starting from an ab initio model potential via an optimization procedure based on classical trajectory calculations for the observed CEDPICS. A dominant attractive well depth was found to be 423 meV (ca. 10 kcal/mol) at a distance of 3.20 A from the center of mass of CH(3)CN in the N-atom side along the CCN axis. In addition, a weak attractive well (ca. 0.9 kcal/mol) surrounding the methyl group (-CH(3)) has been found and ascribed to the interaction between an unoccupied molecular orbital of CH(3)CN and 2s atomic orbital of He*(2(3)S).  相似文献   
6.
A highly sensitive method for the quantitative determination of 2,6-dimethy-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-[2-(N-benzyl-N-methyl-amino)]-ethyl ester 5-methyl ester hydrochloride (YC-93) in plasma is described. After extraction, YC-93 was oxidized to pyridine analogue with nitrous acid and detected by electron capture gas chromatography. The sensitivity was 2–3 ng/ml, which is suficient to determine plasma concentrations of YC-93 after oral administration of clinical doses to humans.  相似文献   
7.
The porphyrin-sexithiophene-fullerene triad 2, where the two central thiophene units of the sexithiophene spacer are bridged with a crown-ether-like polyether chain, undergoes efficient intramolecular electron transfer from the photoexcited porphyrin moiety to the fullerene through the sexithiophene. However, complexation with a sodium cation in the crown ether ring causes complete suppression of electron transfer as a result of a drastic conformational change of the sexithiophene backbone. Furthermore, decomplexation resumes the photoinduced electron transfer. This on/off switching phenomenon indicates that the polyether-bridged sexithiophene can function as a complexation-gated molecular wire.  相似文献   
8.
Oligo(spiroketal)s (OSKs) were synthesized from myo‐inositol, a naturally occurring cyclic compound bearing six hydroxyl groups. The successful synthesis of OSKs was achieved using silyl ethers 2 derived from 1,4‐di‐O‐alkylated myo‐inositol 1 as monomers, which underwent polycondensation with 1,4‐cyclohexanedione (CHD) at 0 °C in the presence of trimethylsilyl triflate as a catalyst. Because of the irreversible nature of the condensation reaction of silyl ethers with ketones, the resulting OSKs 7 had higher molecular weights than previously reported OSKs that were obtained by polycondensation of tetraols 1 with CHD, where backward hydrolysis of the ketal functions occurred. In addition, another series of OSKs, 8, were synthesized using silyl ethers 3 derived from 2,5‐di‐O‐alkylated myo‐inositol 6 , which are more symmetric monomers than silyl ethers 2 . Silyl ethers 3 underwent efficient polycondensation with CHD, whereas tetraol 6 did not, demonstrating that the derivation of such tetraols into the corresponding silyl ethers is a powerful strategy to access OSKs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2407–2414  相似文献   
9.
Quantification of the composition of binary mixtures in secondary ion mass spectrometry (SIMS) is required in the analyses of technological materials from organic electronics to drug delivery systems. In some instances, it is found that there is a linear dependence between the composition, expressed as a ratio of component volumes, and the secondary ion intensities, expressed as a ratio of intensities of ions from each component. However, this ideal relationship fails in the presence of matrix effects and linearity is observed only over small compositional ranges, particularly in the dilute limits. In this paper, we assess an empirical method, which introduces a power law dependence between the intensity ratio and the volume fraction ratio. A previously published physical model of the organic matrix effect is employed to test the limits of the method and a mixed system of 3,3′-bis(9-carbazolyl) biphenyl and tris(2-phenylpyridinato)iridium (III) is used to demonstrate the method. This paper introduces a two-point calibration, which determines both the exponent in the power law and the sensitivity factor for the conversion of ion intensity ratio into volume fraction ratio. We demonstrate that this provides significantly improved accuracy, compared with a one-point calibration, over a wide compositional range in SIMS quantification and with a weak dependence on matrix effects. Because the method enables the use of clearly identifiable secondary ions for quantitative purposes and mitigates commonly observed matrix effects in organic materials, the two-point calibration method could be of significant benefit to SIMS analysts.  相似文献   
10.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS), when used for the analysis of complex material samples, typically provides data that are complicated and challenging to understand. Therefore, additional data analysis techniques, such as multivariate analysis, are often required to facilitate the interpretation of TOF-SIMS data. In this study, a new method based on the information entropy (Shannon entropy) is proposed as an indicator of the outline characteristics of an unknown sample, such as changes in the material within the sample and mixing conditions. The Shannon entropy values are calculated using the relative intensity of every secondary ion normalized to the total ion count and reflect the diversity of secondary ions in the spectrum. Mixed samples containing two organic electroluminescence materials of different ratios, multilayers of Irganox 1010, and other organic materials were employed to evaluate the utility of Shannon entropy in the analysis of TOF-SIMS data. The findings demonstrate that the Shannon entropy of a spectrum indicates differences in materials and changes in the conditions of a material in a sample without the need for peak identification or the knowledge of specific peaks corresponding to the materials in the sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号