首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   23篇
  国内免费   1篇
化学   245篇
晶体学   3篇
力学   3篇
数学   12篇
物理学   37篇
  2023年   4篇
  2022年   3篇
  2021年   4篇
  2020年   11篇
  2019年   13篇
  2018年   5篇
  2017年   1篇
  2016年   22篇
  2015年   3篇
  2014年   13篇
  2013年   18篇
  2012年   20篇
  2011年   22篇
  2010年   9篇
  2009年   4篇
  2008年   20篇
  2007年   10篇
  2006年   17篇
  2005年   14篇
  2004年   6篇
  2003年   9篇
  2002年   12篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
1.
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 3 5+, which is connected through a fourfold rotaxane, was prepared. Heterodimer 3 5+ catalyzed ethane oxidation in the presence of H2O2 at a relatively low temperature. The site-selective complexation of 3 5+ with an additional anionic porphyrin (TPPS4−) through π–π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 3 5+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4− to 3 5+ enhanced the catalytic activity.  相似文献   
2.
3.
4.
For the elucidation of the diversity of secondary metabolites of Dictyostelium cellular slime molds, we investigate the constituent of three species of slime molds. From the methanol extract of their fruit bodies, we obtained three novel compounds, dictyopyrone A (1) and B (2) from D. discoideum and D. rhizoposium and dictyopyrone C (3) from D. longosporum. They possess a unique alpha-pyrone moiety with a side chain at the C-3 position. Their relative structures were elucidated by spectral means, and the absolute configuration was confirmed by asymmetric synthesis of 1. Since these compounds were obtained from different species of Dictyostelium slime molds, they may be a type of compound common to this genus.  相似文献   
5.
We investigated the constituents of Dictyostelium discoideum to clarify the diversity of secondary metabolites of Dictyostelium cellular slime molds and to explore biologically active substances that could be useful in the development of novel drugs. From a methanol extract of the multicellular fruit body of D. discoideum, we isolated two novel amino sugar analogues, furanodictine A (1) and B (2). They are the first 3,6-anhydrosugars to be isolated from natural sources. Their relative structures were elucidated by spectral means, and the absolute configurations were confirmed by asymmetric syntheses of 1 and 2. These furanodictines potently induce neuronal differentiation of rat pheochromocytoma (PC-12) cells.  相似文献   
6.
In this paper we solve the following problems: (i) find two differential operatorsP andQ satisfying [P, Q]=P, whereP flows according to the KP hierarchy P/t n =[(P n/p )+,P], withp:=ordP2; (ii) find a matrix a integral representation for the associated -function. First we construct an infinite dimensional spaceW= span{ 0(z, 1(z,...)} of functions ofz invariant under the action of two operators, multiplication byz p andA c :=z/zz+c. This requirement is satisfied, for arbitraryp, if 0 is a certain function generalizing the classical Hänkel function (forp=2); our representation of the generalized Hänkel function as adouble Laplace transform of a simple function, which was unknown even for thep=2 case, enables us to represent the -function associated with the KP time evolution of the spaceW as a double matrix Laplace transform in two different ways. One representation involves an integration over the space of matrices whose spectrum belongs to a wedge-shaped contour -+ - defined by ± = +e±i/p. The new integrals above relate to matrix Laplace transforms, in contrast with matrix Fourier transforms, which generalize the Kontsevich integrals and solve the operator equation [P, Q]=1.The support of a National Science Foundation grant #DMS-95-4-51179 is gratefully acknowledged.The hospitality of the Volterra Center at Brandeis University is gratefully acknowledged.The hospitality of the University of Louvain and Brandeis University is gratefully acknowledged.The support of a National Science Foundation grant #DMS-95-4-51179, a Nato, an FNRS and a Francqui Foundation grant is gratefully acknowledged.  相似文献   
7.
In this article, two kinds of our transition metal-catalyzed olefin arylations are summarized and discussed. The first one is Ir-catalyzed novel anti-Markovnikov hydroarylation of olefins with benzene. Using this reaction catalyzed by [Ir(μ-acac-O,O′,C3)(acac-O,O′)(acac-C3)]2 (acac = acetylacetonato), 1, straight-chain alkylarenes, which were not obtainable by the conventional Friedel-Crafts aromatic alkylation with olefins, were able to be successfully synthesized directly from arenes and olefins with the higher selectivity than that of branched alkylarenes. This is the first efficient catalyst which shows the desirable high regioselectivity. The reaction of benzene with propylene gave n-propylbenzene and cumene in 61% and 39% selectivities, respectively, and the reaction of benzene and styrene afforded 1,2-diphenylethane in 98% selectivity. The reaction of alkylarene and olefin showed meta and para orientations. A wide range of olefins and arenes can be employed for the synthesis of alkylarenes. The mechanism of the reaction involves C–H bond activation of benzene by Ir center to form Ir–phenyl species. The second reaction is Rh-catalyzed oxidative arylation of ethylene with benzene to directly produce styrene, namely one-step synthesis of styrene. The reaction of benzene with ethylene catalyzed by Rh(ppy)2(OAc) (ppyH = 2-phenylpyridine, OAc = acetate), 3 with Cu oxidizing agent gave styrene and vinyl acetate in 77% and 23% selectivities, respectively, in contrast to those by Pd(OAc)2, 47% of styrene and 53% of vinyl acetate. The mechanism of the reaction involves Rh-mediated C–H bond activation of benzene, which appears to be a rate-determining step. Furthermore, Rh complexes in a Rh(I) oxidation state at the beginning of the reaction work as catalysts for the reaction by addition of acacH and O2 without any oxidizing agent, like Cu salt.  相似文献   
8.
A theoretical study of alcohol oxidation by ferrate   总被引:2,自引:0,他引:2  
The conversion of methanol to formaldehyde mediated by ferrate (FeO(4)2-), monoprotonated ferrate (HFeO4-), and diprotonated ferrate (H2FeO4) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the O-H and C-H bonds of methanol via two entrance reaction channels: (1) an addition-elimination mechanism that involves coordination of methanol to diprotonated ferrate; (2) a direct abstraction mechanism that involves H atom abstraction from the O-H or C-H bond of methanol. Within the framework of the polarizable continuum model (PCM), the energetic profiles of these reaction mechanisms in aqueous solution are calculated and investigated. In the addition-elimination mechanism, the O-H and C-H bonds of ligating methanol are cleaved by an oxo or hydroxo ligand, and therefore the way to the formation of formaldehyde is branched into four reaction pathways. The most favorable reaction pathway in the addition-elimination mechanism is initiated by an O-H cleavage via a four-centered transition state that leads to intermediate containing an Fe-O bond, followed by a C-H cleavage via a five-centered transition state to lead to formaldehyde complex. In the direct abstraction mechanism, the oxidation reaction can be initiated by a direct H atom abstraction from either the O-H or C-H bond, and it is branched into three pathways for the formation of formaldehyde. The most favorable reaction pathway in the direct abstraction mechanism is initiated by C-H activation that leads to organometallic intermediate containing an Fe-C bond, followed by a concerted H atom transfer from the OH group of methanol to an oxo ligand of ferrate. The first steps in both mechanisms are all competitive in energy, but due to the significant energetical stability of the organometallic intermediate, the most likely initial reaction in methanol oxidation by ferrate is the direct C-H bond cleavage.  相似文献   
9.
Highly regioselective transformation of acyclic α,α′-alkenediols and their corresponding diacetates to monoacetates using lipase was accomplished. The acetylation of the α,α′-alkenediol regioselectively gave (E)-monoacetate, whereas the (Z)-monoacetate were obtained by hydrolysis of the α,α′-diacetate.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号