首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   23篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2013年   2篇
  2012年   5篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Thermal behaviour and biochemical activity of potassium-silicate-phosphate glasses modified by addition of Ca, Mg, acting as ecological fertilisers of controlled release rate of the nutrients for plants were studied. It has been found that the biochemical activity of silicate-phosphate glasses depends on the nature and the number of components forming the glassy framework and is related to the thermal stability of glass demonstrated by the formation of new compounds during the process of crystallisation. It is proved that these seemingly different properties are determined by the same parameters which are the strengths bonds of glass network-formers and modifiers as well as their chemical affinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Thermal and structural properties of model silicate-phosphate glasses containing the different amounts of the glass network modifiers, i.e. Mg2+ and Ca2+ were studied. To explain the changes of the parameters characterizing the glass transition effect (Tg, Δcp) and the crystallization process (Tc, ΔH) depending on the cations modifiers additions, analysis of the bonds and chemical interactions of atoms in the structure of glasses was used. 31P MAS-NMR spectra of SiO2–P2O5–MgO(CaO)–K2O glasses show that the phosphate complexes are mono- and diphosphate. It has been found that increasing amounts of Mg2+ or Ca2+ cations in the structure of glasses causes the reduction of the degree of polymerization of the phosphate framework (Q1→Q0). The influence of increasing of modifiers in the structure of silicate- phosphate glasses on the number of non-bridging oxygens per SiO4 tetrahedron and density of glasses was presented.  相似文献   
3.
4.
Heat capacity of single-crystal samples of five chalcogenides (LiInS2, LiInSe2, LiGaS2, LiGaSe2, and LiGaTe2) was measured with DSC in a temperature range from 180 to 460 K. The data for LiInS2 and LiInSe2 were compared with the literature data and shown to agree with the results of adiabatic calorimetry (Gmelin and Hönle in Thermochimica Acta 269: 575–590, 1995) better than with other DSC data (Kühn et al. in Cryst Res Technol 22: 265–269, 1987). Besides, the high-temperature fitting polynomial for C P(T) published about 30 years ago for LiInS2 is wrong. LiGaS2, LiGaSe2, and LiGaTe2 were measured for the first time.  相似文献   
5.
A series of silicate–phosphate glass materials from the SiO2-P2O5-K2O-MgO system (pure and doped with sulfur ions) were synthesized by melting raw material mixtures that contained activated carbon as a reducer. The bulk composition of glass was confirmed with X-ray fluorescence spectroscopy. The homogeneity of the glass was confirmed through elemental mapping at the microstructural level with scanning electron microscopy combined with an analysis of the microregions with energy-dispersive X-ray spectroscopy. The structural and optical properties of the glass were studied by using spectroscopic techniques. The infrared spectroscopy studies that were conducted showed that the addition of sulfur caused changes in the silicate–phosphate networks, as they became more polymerized, which was likely related to the accumulation of potassium near the sulfur ions. By using irradiation with an optical parametric oscillator (OPO) nanosecond laser system operating at the second harmonic wavelength, the glass samples emitted a wide spectrum of luminescence, peaking at about 700 nm when excited by UV light (210–280 nm). The influence of the glass composition and the laser-processing parameters on the emission characteristics is presented and discussed. This work also referred to the density, molar volume, and theoretical optical basicity of pure and sulfur-doped glass.  相似文献   
6.

Iron phosphate-silicate glasses from P2O5–SiO2–K2O–MgO–CaO–Fe2O3 system were subjected to the thermal and spectroscopic studies in order to gain information about their structure and thermal behavior in the range of glass transition effect. Research includes results obtained via DSC, MIR and DRIFT spectroscopy. Designated values of glass transition temperature and specific heat change slightly increases with Fe2O3 incorporation. Spectra collected during thermal treatment of glasses containing 2 and 30 mol% Fe2O3 exhibited various changes. Fe2O3 addition affected the glass structure by its reinforcement and led to its preservation during thermal treatment. The connection between density, molar volume, oxygen packing density and the chemical composition’s alteration were also established because of the direct dependence of physical properties and the structure. Obtained results supported thermal and spectroscopic studies. Conducted research is considered as a contribution to the knowledge about the family of iron phosphate glasses, which are known from their interesting properties and widely used applications.

  相似文献   
7.
Glasses of the SiO2–P2O5–K2O–MgO–CaO–B2O3 system acting as nutrients carriers in the soil environment were synthesised by the melt-quenching technique. Thermal properties were studied using DTA/DSC methods and the influence of B2O3 and P2O5 content on thermal stability and crystallization process of these glasses was examined. The structure of the glass network was characterized by FTIR, 31P, and 11B MAS NMR. The chemical activity of the glasses in the 2 mass% citric acid solution was measured by the ICP-AES method. The analysis indicated that the formation of P–O–B units with chemically stable tetrahedral borate groups decreases the glass solubility in conditions simulating the soil environment.  相似文献   
8.
9.
10.
Silicate-phosphate glasses of SiO2–P2O5–K2O–MgO–CaO system containing manganese cations were investigated to obtain information about the influence of manganese ions on the thermal behavior of such glasses. Amorphous state of glasses and the course of phase transformation and crystallization taking place during their heating were investigated by DSC, XRD, and FTIR methods. It was shown that an increasing content of manganese replacing calcium and magnesium in the structure of analyzed glasses causes decrease of glass transition temperature (T g) and heat capacity change (Δc p) accompanying the glass transformation. Simultaneously, thermal stability of the glasses increased. Products of multistage crystallization of glasses containing up to 8 mol% of MnO2 were: marokite (CaMn2O4), phosphate of Ca9MgK(PO4)7 type, and diopside (CaMgSi2O6). Product of crystallization of glasses containing higher amount of manganese was braunite (Mn7O8SiO4). This was accompanied by change of structure of magnesium calcium silicates from diopside-type structure to akermanite-type silicates (Ca2MgSi2O7). The data interpretation was based on bonds and chemical interactions of the individual components forming the glass structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号