首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
化学   55篇
力学   1篇
物理学   8篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   4篇
  2001年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
We performed ab initio quantum-chemical studies for the development of intra- and intermolecular interaction potentials for formic acid for use in molecular-dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen-bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular-dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular-dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment.  相似文献   
2.
The results of the theoretical study of ground state potential energy surfaces for the chlorine-acetonitrile anion and its photodetachment product are presented. The shallow potential surfaces allow for the nondefinitive position of the chlorine within the complex. The dissociation energy of the neutral complex, estimated through the thermodynamic cycle, indicates significant structural changes due to the photodetachment process. The excess negative charge is localized mostly on the chlorine atom, and the electron detachment proceeds as an electron is removed from chlorine. The process leads to drastic changes in the electrostatic interactions within the complex. The first electronic excited state corresponds to the excess electron transfer from chlorine to acetonitrile fragment. This state is a precursor of the observed charge-transfer-to-solvent state.  相似文献   
3.
Within the presented LCAS MS (linear combination of atomic spinors–molecular spinors) SCF formalism both large and small components of the spinor radial parts have been expanded within the Gaussian basis set. The respective expressions for matrix elements as well as for one- and two-electron integrals are given.  相似文献   
4.
Recently we extended our strategy for MRD-CI (multireference double excitation-configuration interaction) calculations, based on localized/local orbitals and an “effective” CI Hamiltonian, for molecular decompositions of large molecules to breaking a chemical bond in a molecule in a crystalline or other solid environment. Our technique begins with an explicit quantum chemical SCF calculation for a reference molecule surrounded by a number of other molecules in the multipole environment of more distant neighbors. The resulting canonical molecular orbitals are then localized, and the localized occupied and virtual orbitals in the region of interest are included explicitly in the MRD-CI with the remainder of the occupied localized orbitals being folded into an “effective” CI Hamiltonian. The MRD-CI calculations are then carried out for breaking a bond in the reference molecule. This method is completely general in that the space treated explicitly, as well as the surrounding space, may contain voids, defects, deformations, dislocations, impurities, dopants, edges and surfaces, boundaries, etc. Dimethylnitramine is the smallest prototype of the energetic R2N—NO2 nitramines, such as the 6-member ring RDX or the 8-member ring HMX. Decomposition of energetic compounds is initiated in the solid by a breaking of the target bond. Thus, it is crucial to know the difference in energy between breaking a bond in an isolated energetic molecule versus in the molecule in a solid. In the present study, we have carried out MRD-CI calculations for the Me2N—NO2 dissociation of dimethylnitramine in a dimethylnitramine crystal. The cases we investigated were one dimethylnitramine molecule (surrounded by 53 and 685 neighboring dimethylnitramine molecules represented by multipoles), three dimethylnitramine molecules, and three dimethylnitramine molecules (surrounded by 683 neighbors). All multipoles were cumulative atomic multipoles up through quadrupoles. The MRD-CI calculations on dimethylnitramine required large numbers of reference configurations from which were allowed all single and double excitations.  相似文献   
5.
Pyrroles represent building blocks of conjugated poly(heterocycles) which, as organic conductors, are potential materials for organic electronics. Oxidation of β-substituted pyrroles constitutes an important first step in the process of electropolymerization. Ionization energy and the electron spin density distribution are two the most important properties regarding monomers. These properties are studied as a function of electron-withdrawing and electron-donating substituents of pyrrole ring. Evolution of molecular structure, nature of bonding, and electronic density are studied as an effect of ionization process.  相似文献   
6.
The formation of NaSnX(3) (X = halogen) influences the sodium concentration in metal halide lamps making the thermodynamics of such reactions critical for technological developments. Theoretical predictions of the structure and vibrational properties of the quasi-binary NaCl-SnCl(2) system lead to thermodynamical data determined through the third law evaluation. Ab initio enthalpy and entropy of dissociation of NaSnCl(3) also is reported. Additionally, insight into the nature of chemical bonding is provided by electron population analysis and the interaction energy decomposition scheme.  相似文献   
7.
In the present study, the buffering effect of magnetite nanoparticles (Fe3O4) dispersed in an aqueous solution on the local pHpH value is investigated. It manifests itself in the fact that when some amount of acid or base is added to the solution then the solution near the nanoparticles surface becomes, respectively, less acidic and less alkaline than it is expected. It is the result of both the local electrostatic field, which represents the electric double layer at the surface of magnetic nanoparticles and the magnetic field around the nanoparticles. The magnetite nanoparticles exhibit very low toxicity and they are becoming increasingly important for new biomedical applications related to their effects on chemical reactions in body tissues and cells. The question arises, how strong are these effects at the nanoscale? The strength of the buffering property of magnetite nanoparticles is investigated both theoretically and experimentally by the direct measurement of the local pHpH value of a magnetic nanoparticles suspension. The theoretical model is based on stochastic equations describing the ions diffusing in the neighborhood of the electric double layer of the magnetic material. The electric double layer is modeled with the help of the Poisson–Boltzmann model. It is directly shown that both the electrostatic field and the magnetic field are responsible for the observed local changes of the pHpH value with respect to the bulk pHpH value.  相似文献   
8.
We calculate harmonic spectra and shapes of attosecond-pulse trains using numerical solutions of Non-Born-Oppenheimer time-dependent Shr?dinger equation for 1D H2 molecules in an intense laser pulse. A very strong signature of nuclear motion is seen in the time profiles of high-order harmonics. In general the nuclear motion shortens the part of the attosecond-pulse train originating from the first electron contribution, but it may enhance the second electron contribution for longer pulses. The shape of time profiles of harmonics can thus be used for monitoring the nuclear motion.  相似文献   
9.
10.
Various reaction paths of the P-C bond cleavage of alpha-aminophosphonates in acidic media, resulting in the derivatives of phosphonic acid, has been investigated using density functional level of theories in the gas phase as well as in aqueous medium. Dimethyl (alpha-anilinobenzyl)phosphonate has been used as the model molecule and our investigation confirms a three steps process including protonation, P-C bond cleavage, and the transformation of the products from the final transition state (imine cation and H-phosphonate) through hydrolysis. The most favorable reaction path starts from the amino group protonation, followed by a proton transfer through N-H...O(P) hydrogen bond, and the P-C bond cleavage from the resulting protonated structure. Explicit inclusion of water molecules indicated that two waters are needed for the P-C bond cleavage, and the calculated mechanistic paths in this hydrated model are similar to those of the aqueous solvation model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号