首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
化学   10篇
数学   2篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
He  Quan  Lei  Han  Luo  Suxin  Tang  Ping  Peng  Xin  Wang  Xi 《Research on Chemical Intermediates》2017,43(1):353-360
Research on Chemical Intermediates - Ischemia modified albumin detection has great significance in early diagnosis and treatment of myocardial ischemia. In this study, anti-IMA was immobilized on...  相似文献   
2.
3.
Solid-phase nanoextraction is a sample preparation technique, which combines nanotechnology with analytical chemistry, and brings analytical chemistry to a higher level, particularly for complex system analysis. This paper describes a typical example of electrochemical solid-phase nanoextraction and electrochemical detection. Trace amounts of copper (5.0?×?10?13?mol/L) were extracted by electrochemical solid-phase nanoextraction on to the magnesium oxinate nanoparticle-modified carbon paste electrode surface in a pH?7.2 phosphate buffer system at ?0.50 V for 100 s. The extraction is achieved by the cation exchange between copper(II) in the aqueous solution and magnesium(II) from the magnesium oxinate nanoparticles on the electrode surface. The extracted copper shows an irreversible anodic peak at about 0.2 V (vs. saturated calomel electrode). The peak current is proportional to the scan rate, which shows this to be a surface-controlled process. The oxidation peak current is proportional to the logarithm of the copper concentration in the range 5.0?×?10?13?~?5.0?×?10?7?M with a slope of 2.215. This powerful method uses the carbon paste electrode to combine extraction with electrochemical analysis.  相似文献   
4.
The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method combined with alanine-scanning mutagenesis is a very important tool for rational drug design. In this study, molecular dynamics (MD) and MM-PBSA were applied to calculate the binding free energy between the rat intestinal fatty acid binding protein (IFABP) and palmitic acid (PA) to gain insight to the interaction details. Equally spaced snapshots along the trajectory were chosen to perform the binding free energy calculation, which yields a result highly consistent with experimental value with a deviation of 0.4 kcal/mol. Computational alanine scanning was performed on the same set of snapshots by mutating the residues in IFABP to alanine and recomputing the DeltaDeltaG(binding). By postprocessing a single trajectory of the wild-type complex, the average unsigned error of our calculated DeltaDeltaG(binding) is below 1.5 kcal/mol for most of the alanine mutations of the noncharged residues (67% in total). To further investigate some particular mutants, three additional dynamical simulations of IFABP Arg126Ala, Arg106Ala, and Arg106Gln mutants were conducted. Recalculated binding free energies are well consistent with the experimental data. Moreover, the ambiguous role of Arg106 caused by the free energy change of the opposite sign when it is mutated to alanine and glutamine respectively is clarified both structurally and energetically. Typically, this can be attributed to the partial electrostatic compensation mainly from Arg56 and the obvious entropy gain in Arg106Ala mutant while not in Arg106Gln mutant. The presented structural model of IFABP-PA complex could be used to guide future studies.  相似文献   
5.
Liu H  Li Y  Song M  Tan X  Cheng F  Zheng S  Shen J  Luo X  Ji R  Yue J  Hu G  Jiang H  Chen K 《Chemistry & biology》2003,10(11):1103-1113
Potassium ion (K(+)) channels are attractive targets for rational drug design. Based upon a three-dimensional model of the eukaryotic K(+) channels, the docking virtual screening approach was employed to search the China Natural Products Database. Compounds were ranked according to the relative binding energy, favorable shape complementarity, and potential of forming hydrogen bonds with the K(+) channel. Four candidate compounds found by virtual screening were investigated by using the whole-cell voltage-clamp recording in rat dissociated hippocampal neurons. When applied extracellularly, compound 1 markedly depressed the delayed rectifier K(+) current (I(K)) and fast transient K(+) current (I(A)), whereas compounds 2, 3, and 4 exerted a more potent and selective inhibitory effect on I(K). Intracellular application of the four compounds had no effect on both the K(+) currents.  相似文献   
6.
The advent of focused library and virtual screening has reduced the disadvantage of combinatorial chemistry and changed it to a realizable and cost-effective tool in drug discovery. Usually, genetic algorithms (GAs) are used to quickly finding high-scoring molecules by sampling a small subset of the total combinatorial space. Therefore, scoring functions play essential roles in focused library design. Reported here is our initial attempt to establish a new approach for generating a target-focused library using the combination of the scores of structural diversity and binding affinity with our newly improved drug-likeness scoring functions. Meanwhile, a software package, named LD1.0, was developed on the basis of the new approach. One test on a cyclooxygenase (COX)2-focused library successfully reproduced the structures that have been experimentally studied as COX2-selective inhibitors. Another test is on a peroxisome proliferator-activated receptors gamma-focused library design, which not only reproduces the key fragments in the approved (thiazolidinedione) TZD drugs, but also generates some new structures that are more active than the approved drugs or published ligands. Both of the two tests took approximately 15% of the running time of the ordinary molecular docking method. Thus, our new approach is an effective, reliable, and practical way for building up a properly sized focused library with a high hit rate, novel structure, and good ADME/T profile.  相似文献   
7.
8.
应用漫反射红外光谱测定了不同的铜分子筛经真空自还原后吸附CO的基频,组频和泛频谱带,结果表明,CO压力较低时,形成Cu(Ⅰ)(CO)吸附物种,其种类与分子筛的结构特性有关。随CO2压力增高,部分吸附物种转变为Cu(Ⅰ)(CO)2,分析Cu(Ⅰ)(CO)基频和组频谱带可得到比C-O伸缩振动更灵敏的反映Cu(Ⅰ)和CO作用的Cu(Ⅰ)-C伸缩振动频率。  相似文献   
9.
Using the approach of D. Landriault et al. and B. Li and X. Zhou, for a one-dimensional time-homogeneous diffusion process X and constants c 〈 a 〈 b 〈 d, we find expressions of double Laplace transforms of the form Ex[e--θTd--λ∫o Td1a 〈Xs〈b ds; Td 〈 Tc], where Tx denotes the first passage time of level x. As applications, we find explicit Laplace transforms of the corresponding occupation time and occupation density for the Brownian motion with two-valued drift and that of occupation time for the skew Ornstein- Uhlenbeck process, respectively. Some known results are also recovered.  相似文献   
10.
况逸馨  周素馨  胡亚兰  郑娟  欧阳钢锋 《色谱》2022,40(10):882-888
固相微萃取是一种集采样、萃取、富集和进样于一体的样品前处理技术,其萃取效果与涂层材料密切相关。多孔碳材料具有比表面积大、多孔结构可控、活性位点多和化学稳定性好等优点,广泛应用于电池、超级电容器、催化、吸附和分离等领域,也是一种热门的用作固相微萃取探针的涂层材料。衍生多孔碳材料因种类丰富、可设计性强被广泛研究,研究主要集中在对衍生多孔碳材料的结构优化方面。但是衍生多孔碳材料在固相微萃取中的应用还存在如下问题:(1)共价有机框架衍生多孔碳材料的制备已取得较大进展,但将其应用于固相微萃取领域的研究仍较少;(2)有待进一步明确制备出的衍生多孔碳材料用作固相微萃取涂层表现出优异提取能力的机理;(3)有待进一步深入研究将衍生多孔碳材料用作固相微萃取涂层以实现对不同物理化学性质污染物的广谱高灵敏度分析。文章综述了近3年衍生多孔碳材料在固相微萃取中的应用研究,并展望了未来衍生多孔碳材料在固相微萃取中的研究前景。引用文献共56篇,主要来源于Elsevier。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号