首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2020年   2篇
  2014年   3篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Human exposure to 1,3-butadiene (BD) present in automobile exhaust, cigarette smoke, and forest fires is of great concern because of its potent carcinogenicity. The adverse health effects of BD are mediated by its epoxide metabolites such as 3,4-epoxy-1-butene (EB), which covalently modify genomic DNA to form promutagenic nucleobase adducts. Because of their direct role in cancer, BD-DNA adducts can be used as mechanism-based biomarkers of BD exposure. In the present work, a mass spectrometry-based methodology was developed for accurate, sensitive, and precise quantification of EB-induced N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) DNA adducts in vivo. In our approach, EB-GII adducts are selectively released from DNA backbone by neutral thermal hydrolysis, followed by ultrafiltration, offline HPLC purification, and isotope dilution nanoLC/ESI+-HRMS3 analysis on an Orbitrap Velos mass spectrometer. Following method validation, EB-GII lesions were quantified in human fibrosarcoma (HT1080) cells treated with micromolar concentrations of EB and in liver tissues of rats exposed to sub-ppm concentrations of BD (0.5–1.5 ppm). EB-GII concentrations increased linearly from 1.15?±?0.23 to 10.11?±?0.45 adducts per 106 nucleotides in HT1080 cells treated with 0.5–10 μM DEB. EB-GII concentrations in DNA of laboratory rats exposed to 0.5, 1.0, and 1.5 ppm BD were 0.17?±?0.05, 0.33?±?0.08, and 0.50?±?0.04 adducts per 106 nucleotides, respectively. We also used the new method to determine the in vivo half-life of EB-GII adducts in rat liver DNA (2.20?±?0.12 d) and to detect EB-GII in human blood DNA. To our knowledge, this is the first application of nanoLC/ESI+-HRMS3 Orbitrap methodology to quantitative analysis of DNA adducts in vivo.
Figure a
?  相似文献   
2.
Hydrogen bonds (H bonds) play a major role in defining the structure and properties of many substances, as well as phenomena and processes. Traditional H bonds are ubiquitous in nature, yet the demonstration of weak H bonds that occur between a highly polarized C−H group and an electron-rich oxygen atom, has proven elusive. Detailed here are linear and nonlinear IR spectroscopy experiments that reveal the presence of H bonds between the chloroform C−H group and an amide carbonyl oxygen atom in solution at room temperature. Evidence is provided for an amide solvation shell featuring two clearly distinguishable chloroform arrangements that undergo chemical exchange with a time scale of about 2 ps. Furthermore, the enthalpy of breaking the hydrogen bond is found to be 6–20 kJ mol−1. Ab-initio computations support the findings of two distinct solvation shells formed by three chloroform molecules, where one thermally undergoes hydrogen-bond making and breaking.  相似文献   
3.
4.
A series of nitrogen-containing carbon spheres (CS) was prepared using the modified Stöber method. These CS were synthesized by using resorcinol and formaldehyde as carbon precursors, melamine as nitrogen precursor and ammonia as a polymerization reaction catalyst. Hydrothermal treatment followed by activation of these polymer spheres resulted in highly porous nitrogen-containing CS. Elemental analysis and N2 adsorption showed that the aforementioned CS exhibited high surface area (reaching 1,610 m2/g) with large fraction of fine micropores (volume of micropores smaller than 1 nm was estimated to be 0.40 cm3/g) and comparatively high nitrogen content (about 4.0 at.%). Interestingly, high CO2 adsorption capacities, 4.4 and 6.9 mmol/g, were obtained for these CS at 1 bar and two temperatures, 25 and 0 °C, respectively.  相似文献   
5.
Hydrogen bonds (H bonds) play a major role in defining the structure and properties of many substances, as well as phenomena and processes. Traditional H bonds are ubiquitous in nature, yet the demonstration of weak H bonds that occur between a highly polarized C?H group and an electron‐rich oxygen atom, has proven elusive. Detailed here are linear and nonlinear IR spectroscopy experiments that reveal the presence of H bonds between the chloroform C?H group and an amide carbonyl oxygen atom in solution at room temperature. Evidence is provided for an amide solvation shell featuring two clearly distinguishable chloroform arrangements that undergo chemical exchange with a time scale of about 2 ps. Furthermore, the enthalpy of breaking the hydrogen bond is found to be 6–20 kJ mol?1. Ab‐initio computations support the findings of two distinct solvation shells formed by three chloroform molecules, where one thermally undergoes hydrogen‐bond making and breaking.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号