全文获取类型
收费全文 | 65篇 |
免费 | 0篇 |
国内免费 | 1篇 |
专业分类
化学 | 45篇 |
晶体学 | 1篇 |
力学 | 1篇 |
数学 | 1篇 |
物理学 | 18篇 |
出版年
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 3篇 |
2020年 | 2篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 2篇 |
2013年 | 2篇 |
2012年 | 5篇 |
2011年 | 6篇 |
2010年 | 3篇 |
2009年 | 2篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 3篇 |
2005年 | 4篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 3篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1993年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Gerard de Leeuw John S. Field Raymond J. Haines Beth McCulloch Elsie Meintjies Christiaan Monberg Gillian M. Olivier Praveen Ramdial Clifford N. Sampson Beate Sigwarth Nick D. Steen Kandasamy G. Moodley 《Journal of organometallic chemistry》1984,275(1):99-111
Reaction of [Fe2(CO)9] with a half molar amount of R2PYPR2 (Y = CH2, R = Ph, Me, OMe or OPri; Y = N(Et), R = OPh, OMe or OCH2; Y = N(Me), R = OPri or OEt) leads to the ready formation of a product which on irradiation with ultraviolet light rapidly decarbonylates to the heptacarbonyl derivative [Fe2(μ-CO)(CO)6{μ-R2PYPR2}]. Treatment of the latter with a slight excess of the appropriate ligand results, under photochemical conditions, in the formation of the dinuclear pentacarbonyl complex [Fe2(μ-CO)(C))4{μ-R2PYPR2}2] but under thermal conditions in the formation of the mononuclear species [Fe(CO)3{R2PYPR2}]. Reaction of [Ru3(CO)12] with an equimolar amount of (RO)2PN(R′)P(OR)2 (R′ = Me, R = Pri or Et; R′ = Et, R = Ph or Me) under either thermal or photochemical conditions produces [Ru3(CO)10{μ-(RO)2PN(OR)2}] which reacts further with excess (RO)2PN(R′)P(OR)2 on irradiation with ultraviolet light to afford the dinuclear compound [Ru2(μ-CO)(CO4{μ-(RO)2PN(R′)P(OR)2}2]. The molecular structure of [Ru2(μ-CO)(CO)4{μ-(MeO)2PN(Et)P(OMe)2}2], which has been determined by X-ray crystallography, is described. 相似文献
2.
PM De Biase CJ Solano S Markosyan L Czapla SY Noskov 《Journal of chemical theory and computation》2012,8(7):2540-2551
A theoretical framework is presented to model ion and DNA translocation across a nanopore confinement under an applied electric field. A combined Grand Canonical Monte Carlo Brownian Dynamics (GCMC/BD) algorithm offers a general approach to study ion permeation through wide molecular pores with a direct account of ion-ion and ion-DNA correlations. This work extends previously developed theory by incorporating the recently developed coarse-grain polymer model of DNA by de Pablo and colleagues [Knotts, T. A.; Rathore, N.; Schwartz, D. C.; de Pablo, J. J. J. Chem. Phys. 2007, 126] with explicit ions for simulations of polymer dynamics. Atomistic MD simulations were used to guide model developments. The power of the developed scheme is illustrated with studies of single-stranded DNA (ss-DNA) oligomer translocation in two model cases: a cylindrical pore with a varying radius and a well-studied experimental system, the staphylococcal α-hemolysin channel. The developed model shows good agreement with experimental data for model studies of two homopolymers: ss-poly(dA)(n) and ss-poly(dC)(n). The developed protocol allows for direct evaluation of different factors (charge distribution and pore shape and size) controlling DNA translocation in a variety of nanopores. 相似文献
3.
4.
Fluorescence methodologies have been utilized to examine micropolarity, intramolecular motion, and singlet quenching in the intraparticle void volume of zeolites X, Y, and ultrastable Y (USY) interfaced with bathing polar solvents. Micropolarity was assessed from the 3-to-1 band ratio (III/I) of the fluorescence spectrum of pyrene (PY) and from lambda(max) of the fluorescence spectrum of 1-pyrenecarboxaldehyde (1-PCA). In zeolites bathed in anhydrous solvents, both PY and 1-PCA reported increased micropolarity according to the trend USY < bulk solvent < NaX approximately NaY. For example, in NaY (USY), III/I ranged from 0.44 (0.98) in acetonitrile to 0.52 (1.34) in n-hexanol, compared to 0.60, 1.06, and 1.62 in bulk acetonitrile (ACN), n-hexanol, and n-hexane, respectively. The polarity studies reveal that the ionic nature of NaX and NaY and the hydrophobic nature of USY strongly influence the microenvironment of the arene despite the presence of desorbing polar solvents. Constraints on intramolecular motion were examined in polar-solvated NaX through measurements of the fluorescence lifetime of trans-stilbene. Lifetimes ranged from 113 ps in NaX-ACN to 671 ps in NaX-tert-butyl alcohol. The latter value is close to that observed in bulk glycerol. Diffusion-controlled quenching of PY fluorescence by O2 and a series of nitrocompounds dissolved in solvents bathing the zeolite was examined by a time-resolved approach. For all of the quenchers and solvents studied, quenching was more efficient in USY compared to NaX and NaY. Interestingly, the rate of O2 quenching in USY-MeOH was only 12 times lower than that in bulk MeOH. In contrast, in NaY-MeOH and NaX-MeOH the rate of O2 quenching was too low to be measured. The rate constants in these systems were therefore taken as the rate constant for diffusion-controlled quenching of trapped electrons measured previously. These values were 600 times and 10(5) times lower than the rate of fluorescence quenching in USY-MeOH, respectively. The O2 quenching studies show that dispersive interactions of polar solvents with the cavity walls dominate in USY because of the hydrophobic nature of the USY surface. In NaX and NaY, stronger ion-dipole and hydrogen bonding interactions dominate and lead to more restricted access and lowered quenching efficiency. Perrin (or static) quenching of pyrene fluorescence was also examined to infer the concentration of nitromethane (NM) in the void volume of NaX and NaY bathed in MeOH, ACN, or H2O. The results indicate that access of NM to the interior of NaY is more inhibited in ACN compared to MeOH, presumably because of the higher dipole moment of ACN and its resulting stronger association with the zeolite surface. At similar levels of static quenching equated to a similar NM concentration in the zeolite, dynamic quenching by NM varied by no more than a factor of 2 in all systems compared. This implies that the rate of NM diffusion in solvated zeolite interiors is similar regardless of zeolite or solvent properties. In contrast to O2 diffusion in zeolites, NM exhibits a high dipole moment and can therefore migrate through polar-solvated zeolite apertures by adsorbing to the zeolite. Overall, the results of this study show a close relationship between the behavior of probes and quenchers in the confines of polar-solvated zeolite interiors and the chemical properties of the zeolite. Differences between weakly and strongly interacting surfaces are revealed clearly in the results. 相似文献
5.
Daniil Nikitin Jan Hanu Suren Ali‐Ogly Oleksandr Polonskyi Jonas Drewes Franz Faupel Hynek Biederman Andrei Choukourov 《Plasma Processes and Polymers》2019,16(10)
In‐situ UV–Vis spectroscopy was used for investigating the evolution of silver nanoparticles (NPs) inside the gas aggregation cluster source (GAS). The light beam probed the interior of the GAS at different distances from the magnetron. Plasmon resonance was detected at 365 nm, with the highest intensity found close to the magnetron due to the NP trapping. Time‐resolved measurements revealed that after the discharge switch off the majority of trapped NPs fly out of the GAS. Part of them is redeposited onto the center of the target due to the electrostatic force. NPs collected at the distance of 20 mm and further from the magnetron demonstrate gradual decrease of the size, pointing to the loss of bigger NPs on the walls. 相似文献
6.
Irene Gonzalez-Valls Dechan Angmo Suren A. Gevorgyan Juan Sebastián Reparaz Frederik C. Krebs Monica Lira-Cantu 《Journal of Polymer Science.Polymer Physics》2013,51(4):272-280
Vertically aligned ZnO nanorods (NR) are prepared by two different syntheses methods and applied on polymer solar cells (PSCs). The ZnO electrodes work as the electron transport layer with the P3HT:PCBM blend acting as the active material. Several organic blend solution conditions are optimized: concentration, solvent, and deposition speed. The effect of different NR electrode morphologies is analyzed on the solar cell performance and characterized by current–voltage curves and IPCE analyses. The photovoltaic performance of the solar cells was observed to be influenced by many factors, among them infiltration of the organic P3HT:PCBM blend within the ZnO NR layer. The infiltration of the active layer was monitored by cross section SEM and energy dispersive X-ray spectroscopy analyses. Our results show that higher power conversion efficiencies are achieved when shorter NRs lengths are applied. The best power conversion efficiency obtained was 2.0% for a 400 nm ZnO NR electrode. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 相似文献
7.
Kalinin S Felekyan S Antonik M Seidel CA 《The journal of physical chemistry. B》2007,111(34):10253-10262
Analysis of anisotropy in single-molecule fluorescence experiments using the probability distribution analysis (PDA) method is presented. The theory of anisotropy-PDA is an extension of the PDA theory recently developed for the analysis of F?rster resonance energy transfer (FRET) signals [Antonik, M.; et al. J. Phys. Chem. B 2006, 110, 6970]. The PDA method predicts the shape of anisotropy histograms for any given expected ensemble anisotropy, signal intensity distribution, and background. Further improvements of the PDA theory allow one to work with very low photon numbers, i.e., starting from the level of background signal. Analysis of experimental and simulated data shows that PDA has the major advantage to unambiguously distinguish between shot noise broadening and broadening caused by heterogeneities in the sample. Fitting of experimental histograms yields anisotropy values of individual species, which can be directly compared with those measured in ensemble experiments. Excellent agreement between the ensemble data and the results of PDA demonstrates a good absolute accuracy of the PDA method. The precision in determination of mean values depends mainly on the total number of photons, whereas the ability of PDA to detect the presence of heterogeneities strongly depends on the time window length. In its present form PDA can be also applied to computed fluorescence parameters such as FRET efficiency and scatter-corrected fluorescence anisotropy. Extension of the PDA theory to low photon numbers makes it possible to apply PDA to dynamic systems, for which high time resolution is required. In this way PDA is developed as a sensitive tool to detect biomolecular heterogeneities in space and time. 相似文献
8.
Suren A. Grigoryan Daniar H. Mushtari Peter G. Ovchinnikov 《International Journal of Theoretical Physics》2000,39(3):705-709
We study the notions of disjunctivity and alternativity of orthomodular posets inthe context of orthoprojections or skew projections in C
*-algebras. 相似文献
9.
10.