首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   14篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 156 毫秒
1.
2.
3.
4.
Herein, we study the conjugation properties of three different thienoacenes, each of which has three or four fused thiophene rings, by means of Fourier transform Raman spectroscopy. The B3LYP/6-31G** vibrational analysis of all of the collected spectroscopic data evidences that the selective enhancement of a limited number of Raman scatterings is related to the occurrence in the three thienoacenes of a vibronic coupling between the lowest unoccupied frontier molecular orbital (LUMO) and some Raman-active skeletal nu(C==C) stretching modes of 1600-1300 cm(-1).  相似文献   
5.
6.
7.
Hydrogen gas serves as a reducing agent and hydrogen atom source in numerous industrially important chemical processes and also has a great potential as a clean power source for fuel cells. In this respect, the reversible storage of hydrogen and the development of new metal-free hydrogenation catalysts are important tasks. Here, we review the recent literature, primarily on cases where the split H2 forms an N-H?H-B dihydrogen bond. In these systems dihydrogen interaction was found to be the key actor in the hydrogen liberating process. Accordingly, the intramolecular ansa-aminoboranes (where B and N atoms are situated within each other’s range) can reversibly activate hydrogen. Moreover, the theoretical studies of the hydrogen splitting by bulky Lewis acid-Lewis base systems are discussed.  相似文献   
8.
Aromatic carbonyl compounds in combination with B(C(6)F(5))(3) are able to activate H(2) heterolytically. The reactivity of the carbonyl-B(C(6)F(5))(3) adduct is initiated by its thermal dissociation into components. After H(2) addition, aromatic carbonyl compounds convert into aryl-substituted methanes or alcohols.  相似文献   
9.
The mechanism of reversible hydrogen activation by ansa-aminoboranes, 1-N-TMPH-CH(2)-2-[HB(C(6)F(5))(2)]C(6)H(4) (NHHB), was studied by neutron diffraction and thermogravimetric mass-spectroscopic experiments in the solid state as well as with NMR and FT-IR spectroscopy in solution. The structure of the ansa-ammonium borate NHHB was determined by neutron scattering, revealing a short N-H···H-B dihydrogen bond of 1.67 ?. Moreover, this intramolecular H-H distance was determined in solution to be also 1.6-1.8 ? by (1)H NMR spectroscopic T(1) relaxation and 1D NOE measurements. The X-ray B-H and N-H distances deviated from the neutron and the calculated values. The dynamic nature of the molecular tweezers in solution was additionally studied by multinuclear and variable-temperature NMR spectroscopy. We synthesized stable, individual isotopic isomers NDDB, NHDB, and NDHB. NMR measurements revealed a primary isotope effect in the chemical shift difference (p)Δ(1)H(D) = δ(NH) - δ(ND) (0.56 ppm), and hence supported dihydrogen bonding. The NMR studies gave strong evidence that the structure of NHHB in solution is similar to that in the solid state. This is corroborated by IR studies providing clear evidence for the dynamic nature of the intramolecular dihydrogen bonding at room temperature. Interestingly, no kinetic isotope effect was detected for the activation of deuterium hydride by the ansa-aminoborane NB. Theoretical calculations attribute this to an "early transition state". Moreover, 2D NOESY NMR measurements support fast intermolecular proton exchange in aprotic CD(2)Cl(2) and C(6)D(6).  相似文献   
10.
[reaction: see text] A new convenient method for the construction of thiophene-annulated thieno[2,3-b]thiophenes has been proposed. The key step of the method is ring closure of 10H-bisthienodithiocin-10-one by strong bases. The syntheses of two previously unknown annulated oligothiophenes, thieno[2,3-b]thieno[3',2':4,5]thieno[3,2-d]thiophene (1a) and thieno[3,2-b]thieno[2',3':4,5]thieno[3,2-d]thiophene (1b), have been described to illustrate the success of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号