首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
化学   11篇
物理学   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
CaCl2 is applied as an efficient reusable and eco-friendly bifunctional catalyst for the one-pot three-component synthesis of 4H-pyrans under ultrasonic irradiation. A broad range of substrates including the aromatic and heteroaromatic aldehydes, indoline-2,3-dione (isatin) derivatives, acenaphthylene-1,2-dione (acenaphthenequinone) and 2, 2-dihydroxy-2H-indene-1,3-dione (ninhydrin) were condensed with carbonyl compounds possessing a reactive ??-methylene group and alkylmalonates. All reactions are completed in short times, and the products are obtained in good to excellent yields. The catalyst could be recycled and reused several times without any loss of efficiency.  相似文献   
2.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   
3.
In this study, a step-by-step method for the synthesis of platinum nanoparticles and copper(I) complex supported on mesoporous silica hollow spheres (Pt-MSHSs-Cu) is introduced. Scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption–desorption, energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, and elemental and thermogravimetric analyses were applied for characterization of the surface, structure, size, phase composition, and morphology of the synthesized materials. The characterized material, Pt-MSHSs-Cu, was used as an efficient and heterogeneous catalyst in the Sonogashira coupling reaction under different reaction conditions. In comparison with MSHSs, Cu(I)-functionalized MSHSs (MSHSs-Cu), and Pt-MSHSs samples, the Pt-MSHSs-Cu catalyst exhibited significantly increased catalytic performance with 91.50% yield. Therefore, the results obtained suggested a synergistic effect derived from platinum nanoparticles, MSHSs substrate, and copper(I) complex, which enhanced the rate of the Sonogashira coupling reaction.  相似文献   
4.
In this study, the performances of four ionic-liquid-based microextraction methods, ionic-liquid-based dispersive liquid–liquid microextraction (IL-DLLME), ionic-liquid-based ultrasound-assisted emulsification microextraction (IL-USA-ME), temperature-controlled ionic-liquid dispersive liquid-phase microextraction (TC-IL-DLME), and ultrasound-assisted temperature-controlled ionic-liquid dispersive liquid-phase microextraction (USA-TC-IL-DLME), were investigated for extraction of three bioactive compounds (anethole, estragole, and anisaldehyde) from different plant extracts and human urine. Anethole and estragole were chosen because they can alter cellular processes positively or negatively, and an efficient method is needed for their extraction and sensitive determination in the samples mentioned. Because there is no previous report on the separation of anethole and estragole (structural isomers), first, simultaneous gradient elution and flow programming were used. The microextraction methods were then applied and compared for analysis of these compounds in plant extracts and human urine by use of high-performance liquid chromatography (HPLC). The effect of conditions on extraction efficiency was studied and under the optimum conditions, the best enrichment factors (58–64), limits of detection (14–18 ng mL?1), limits of quantification (47–60 ng mL?1), and recovery (94.4–101.7 %) were obtained by use of USA-TC-IL-DLME. The optimized conditions were used to determine anethole, estragole, and para-anisaldehyde in fennel, anise, and tarragon extracts and in human urine.  相似文献   
5.
Five novel polycyclic heterocyclic ring systems are reported via photocyclization. The specific final products in these ring systems are: naphtho[1′,2′:4,5]thieno[2,3-c][1,8]naphthyridin-6(5H)-one ( 5 ), naphtho-[1′,2′:4,5]thieno[2,3-c][1,6]naphthyridin-6(5H)-one ( 6 ), naphtho[1′,2′:4,5]thieno[2,3-c]-1,5-naphthyridine ( 9 ), naphtho[1′,2′:4,5]thieno[2,3-c][1,2,4]triazolo[4,3-a]-1,5-naphthyridine ( 12 ), and naphtho[2′,1′:4,5]thieno[2,3-c]-1,5-naphthyridine ( 17 ). The direction of photocyclization to produce 9 was established from a zero quantum two-dimensional nmr spectroscopy experiment (ZQCOSY) using 6-chloronaphtho[1′,2′:4,5]thieno[2,3-c]-1,5-naphthyridine ( 8 ) as the model compound.  相似文献   
6.
7.
8.
This paper presents the results of a study on the effects of two different doses of low-level laser therapy on healing of deep second-degree burns. Sixty rats were randomly allocated to one of four groups. A deep second-degree burn was inflicted in each rat. In the control group burns remained untreated; in two laser treated groups the burns were irradiated daily with low-level helium-neon laser with energy densities of 1.2 and 2.4 J/cm2, respectively. In the fourth group the burns were treated topically with 0.2% nitrofurazone cream every day. The response to treatments was assessed histologically at 7, 16 and 30 days after burning, and microbiologically at Day 15. The number of macrophages at day 16, and the depth of new epidermis at day 30, was significantly less in the laser treated groups in comparison with control and nitrofurazone treated groups (P=0.000). Staphylococcus epidermidis was found in the 70% of rat wounds in the laser treated groups in comparison with 100% of rats in the control group. S. aureus was found in the 40% rat wounds in the nitrofurazone treated group, but there was not found in the wounds of laser treated, and control groups. It is concluded that low-level laser therapy of deep second-degree burn caused significant decrease in the number of macrophage and depth of new epidermis. In addition, it decreased incidence of S. epidermidis and S. aureus.  相似文献   
9.
A series of monomethoxynaphtho[1′,2′:4,5]thieno[2,3-c]quinolines has been prepared by photocyclization of the appropriate N-methoxyphenyl-1-chloronaphtho[2,1-b]thiophene-2-carboxamides. Some of the lactams obtained were converted into the thiolactams and their S-methyl derivatives. The lactams were also converted into the corresponding 6-chloro derivatives. Some of these were catalytically dechlorinated into the monomethoxynaphtho[1′,2′:4,5]thieno[2,3-c]quinolines which were then quaternized into the N-methyl quaternary salts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号