首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
化学   38篇
晶体学   2篇
物理学   2篇
  2021年   2篇
  2020年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
1.
Hydrogen transport through a Pd-Ni alloy electrodeposited on a Pd substrate (Pd-Ni/Pd bilayer symmetric electrode) has been investigated using cyclic voltammetry and a.c. impedance spectroscopy combined with the electrochemical hydrogen permeation method. The permeation build-up current transients and the measured impedance spectra were analyzed using the time-lag method for the bilayer electrode and a complex non-linear least squares data-fitting method based upon the derived Faradaic admittance for the hydrogen absorption into and diffusion through the bilayer electrode under the permeable boundary condition, respectively. The value of the hydrogen diffusivity in the Pd-Ni layer was lower than that in the Pd layer. Furthermore, the values of the charge transfer resistance and equilibrium absorption constant for the Pd-Ni/Pd bilayer electrode were higher than those for the Pd single layer electrode. From the experimental results, the role of the thin Ni(OH)2 film formed on the Pd-Ni layer surface in the hydrogen transport through the Pd-Ni/Pd bilayer electrode is discussed in terms of its passivating effect and extremely large hydrogen solubility. Received: 22 January 1997 / Accepted: 15 April 1997  相似文献   
2.
In the present work, corrosion resistance of surface-coated galvanized steel was quantitatively determined by an analysis of the alternating current (AC) impedance spectra measured on the salt-spray-tested specimen. To evaluate the corrosion resistance of the surface-coated galvanized steel, AC impedance spectroscopy was performed on the salt-spray-tested specimen previously exposed to salt-sprayed corrosive environment. From the analysis of the impedance spectra, the area fraction transient of white rust θ 2(t) was theoretically derived from the equivalent circuit equation by using two fitting parameters. The values of the two fitting parameters were determined by fitting the empirical transient equations to the area fraction of the resin coating layer and to the total resistance obtained from the impedance spectra measured, respectively. From the analyses of θ 2(t) for four kinds of surface-coated galvanized steels with various resin coating layers, it is indicated that as the values of the two fitting parameters decrease in the order of CP, GI, OD and OM (commercial trade names) specimens, the corrosion resistance increases in that order as well. Furthermore, from the quantitative comparison of the two fitting parameters with the polarization resistance of the upper resin coating layer R p determined from the potentiodynamic polarization curve, it is suggested that the two fitting parameters decrease in value as well with increasing R p.  相似文献   
3.
Blend-based polymer electrolytes composed of poly(ethylene oxide), poly(oligo[oxyethylene]oxysebacoyl), and lithium salts have been prepared. These polymer electrolytes have been investigated in terms of ionic conductivity, transport number, and interfacial characteristics of the lithium electrode in contact with the polymer electrolyte. The influences of the blend composition, the salt used, and its concentration on the electrochemical behavior were studied. © 1996 John Wiley & Sons, Inc.  相似文献   
4.
5.
6.
7.
8.
The repassivation kinetics of pure aluminium have been explored in aqueous alkaline solutions as functions of applied anodic potential and pH by using an abrading electrode technique and a rotating disc electrode. The repassivation rate of the abraded bare surface of pure aluminium increased with increasing applied anodic potential in aqueous alkaline solutions, while it decreased with increasing pH. These results revealed that the growth rate of the passivating oxide film is enhanced by an applied electric field, but it is lowered due to the chemical attack by hydroxyl ions. A potentiostatic anodic current decay transient obtained from the abraded electrode surface showed a constant repassivation rate in neutral and weakly alkaline solutions. In contrast, in concentrated alkaline solutions it was observed to consist of three stages: a high repassivation rate in the initial stage due to a high formation rate of the oxide film on the abraded bare surface; a zero value of the repassivation rate in the second stage due to the dissolution of the oxide film by the attack of OH; a high repassivation rate in the third stage due to a lowered dissolution rate of the oxide film. The dissolution rate of the passivating oxide film was observed to depend on the removal rate of aluminate ions from the oxide/solution interface. Received: 1 April 1998 / Accepted: 3 July 1998  相似文献   
9.
The effects of pore fractal characteristics on the kinetics of double-layer charging/discharging on a porous carbon electrode were investigated by using theoretical calculations of potentiostatic current transients (PCTs) and cyclic voltammograms (CVs). Prior to theoretical calculation, it was experimentally evidenced that pore fractality is clearly possessed by the porous carbon electrode. From the analyses of the PCTs and the CVs theoretically calculated at various values of pore fractal dimension dF,pore, inner cutoff length rmin, and outer cutoff length rmax of the pore fractality, it was found that as dF,pore increased, the absolute values of the derivatives of the logarithmic PCTs decreased to 0.5, and the current decayed more slowly with time. The rate capability gamma decreases with increasing dF,pore over the whole scan-rate range, which leads to the lower power density. As rmin increased, the current decayed more rapidly in the later stage of the PCT, which is mainly limited by the smaller pores. On the other hand, as rmax increased, the current decayed more rapidly in the earlier stage of the PCT, which is mainly determined by the larger pores. Moreover, the larger values of rmin and rmax enhance the rate capability gamma as well, but they reduce the double-layer capacitance. The beneficial contribution of the larger pores to the power density competes with the detrimental contribution of those pores to the energy density.  相似文献   
10.
This paper contributes to the kinetics of hydrogen transport through the Pd foil electrode in 0.1 mol l–1 NaOH solution during the hydrogen extraction from the foil electrode under the self-discharge and potentiostatic conditions by the analysis of open-circuit potential and anodic current transients, respectively. The hydrogen oxidation rate calculated based upon the mixed potential theory just equals the rate of hydrogen self-discharge from the electrode during the OCP transient. When the electrode surface is subjected even to a constant discharging potential, the hydrogen concentration gradient at the surface is given by the Butler-Volmer equation combined with the decay in actual potential jump with time below the transition discharging potential; however, the constant hydrogen concentration condition is satisfied at the surface above this potential. By taking the hydrogen oxidation rate during the OCP transient and the two constraints during the anodic current transient as the boundary condition at the surface, the hydrogen concentration profile transients have been derived during the hydrogen extraction under the self-discharge and potentiostatic conditions, respectively. Electronic Publication  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号