首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
化学   16篇
数学   6篇
物理学   28篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1984年   4篇
  1983年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1935年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
2.
In this contribution we have studied the key electrical parameters of silica aerogels and of silica-aerogel-based composites, namely the dielectric constants , the dielectric losses tan (at 1 kHz), and the breakdown fields E b (at 50 Hz). For low-density bulk silica aerogels we find =1.25 and tan =0.0005. E b is about 500 kV/cm in quasi-homogeneous fields, and of the order of MV/cm in strongly inhomogeneous fields. The dielectric constants of partially densified aerogels increase linearly with density; their dielectric losses are relatively large and their breakdown fields are comparativiely low. The same results are found for aerogels in the form of settled materials, i.e. aerogel granules and powders in air. Acrylate-based aerogel composites with volume fractions larger than 70% have low dielectric constants but their losses are at least 10 times higher than those of low-density aerogels. These materials sustain high local fields in the MV/cm region, while in quasihomogeneous fields, breakdown occurs at about 100 kV/cm. Based on the present results and the interplay with other physical properties (low mechanical resistance, low thermal conductivity, adsorption of water, etc.), silica aerogels and silica aerogel-acrylate-based composites are predicted to have a low potential for electrical insulation.  相似文献   
3.
Anodic films formed potentiostatically in 1M NaOH on Cadmium electrodes were examined by means of electron diffraction under carefully controlled conditions. Glancing incidence electron diffraction indicates the presence of Cd(OH)2 on the electrolyte side of the film and of CdO on the metal side. Transmission electron diffraction of thin isolated films indicates only Cd(OH)2 in films formed below the Flade-potential of the CdO electrode, but CdO along with Cd(OH)2 above the Flade-potential. In these films selected area diffraction reveals spots consisting exclusively of a very thin oxid layer.  相似文献   
4.
"Thermal desorption experiments" were carried out during which heavy metal evaporation was studied by on-line monitoring. This could be achieved by the use of a tubular furnace connected to a heavy metal detector, i.e. an ICP-OES (inductively coupled plasma optical emission spectrometer), by a specially designed and patented interface. The spectrograms typically had a time resolution of four different elements per minute using a conventional (sequentially operating) ICP-OES. This study shows how thermo-desorption spectrometry (TDS) can be applied to study the evaporation of high boiling substances, such as heavy metal and alkali metal compounds. The future scope of the method is discussed.  相似文献   
5.
Using the approach of Rulla (1996 SIAM J. Numer. Anal. 33, 68-87)for analysing the time discretization error and assuming moreregularity on the initial data, we improve on the error boundderived by Barrett and Blowey (1996 IMA J. Numer. Anal. 16,257-287) for a fully practical piecewise linear finite elementapproximation with a backward Euler time discretization of amodel for phase separation of a multi-component alloy.  相似文献   
6.
7.
The adsorption of atomic hydrogen at Si(100)2 × 1 has been studied for coverages at and below one monolayer at temperatures between 300 and 1200 K using high-resolution Electron Energy Loss Spectroscopy (EELS) and Low Energy Electron Diffraction (LEED). Measurements of EELS frequencies, linewidths and intensities are discussed for different coverages and temperatures during exposure as well as subsequent annealing. Formation of a monohydride Si(100)2 × 1 : H adsorption phase is observed at room temperature in the sub-monolayer range, at 650 K for all coverages up to the saturation, and during thermal decomposition of the low temperature dihydride Si(100)1 × 1 : : 2H adsorption phase. The latter is formed by saturating Si(100) at 300 K with atomic hydrogen.  相似文献   
8.
This letter addresses how iron redox cycling and the hydration properties of the exchangeable cation influence the Br?nsted basicity of adsorbed water in 2:1 phyllosilicates. The probe pentachloroethane undergoes facile dehydrochlorination to tetrachloroethene, attributed to increases in the Br?nsted basicity of near-surface hydrating water molecules following the reduction of structural Fe(III) to Fe(II). This dehydrochlorination process is studied in the presence of Na(+)- or K(+)-saturated Upton montmorillonite [(Na0.82 (Si7.84 Al0.16)(Al3.10 Fe(3+)0.3 Mg0.66) O20 (OH)4] or ferruginous smectite [(Na0.87 Si7.38 Al0.62)(Al1.08) Fe(3+)2.67 Fe(2+)0.01 Mg0.23) O20 (OH)4]. The effect of iron redox cycling on pentachloroethane dehydrochlorination is studied using reduced or reduced and reoxidized smectite samples saturated with Na+ (fully expanded clay) or K+ (fully collapsed clay). Variations in the clay Br?nsted basicity following Na+ -for- K+ exchange are explained by cationic charge compensation or interlayer hydration/expansion imposed by the nature of the exchangeable cation. Inverse relations between K+ fixation and clay water content as well as trends in pentachloroethane transformation indicate that increases in the Br?nsted basicity result from increases in the clay hydrophilicity and shifts in the local activity of distorted clay water. Potassium fixation causes partially collapsed smectites bearing low amounts of structural Fe(II) to have a similar reactivity to that of fully expanded smectites (Na+ form) bearing higher amounts of structural Fe(II). In particular, the conversion of up to 80% of the pentachloroethane to tetrachloroethane by K+ -saturated, reoxidized Upton was explained because the fixation of K+ causes nonreversible expansion and incomplete reoxidation of structural Fe(II), which contributes to the stabilization of charge density near sites bearing Fe(II). Higher pentachloroethane conversions by Upton montmorillonite over ferruginous smectite, however, suggest that charge dispersion rather than site specificity contributes predominantly to clay reactivity. Thus, clay interlayer hydration/expansion imposed by the nature of the exchangeable cation alters water dissociation and proton exchange in Fe(II)-Fe(III) phyllosilicates susceptible to iron redox cycling.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号