首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
化学   14篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2005年   1篇
  2003年   1篇
  1996年   1篇
  1976年   1篇
  1902年   2篇
  1891年   2篇
排序方式: 共有14条查询结果,搜索用时 281 毫秒
1.
Summary A cerebroside fraction was obtained from the fruit bodies offomitopsis pinicola using column chromatography and then separated into six compounds by reversed-phase HPLC. The sugar component of all cerebrosides wasD-glucose. The major fatty acids were 2-hydroxyfatty acids (C14–C18), the long chain base was identified as 9-methyl-C18-4,8-sphingadienine which is widely distributed in fungi and reported to be essential for the fruit-inducing activity of fungi. Based on degradation studies, fast atom bombardment mass spectrometry, and different1H and13C NMR investigations, the structure of the main cerebroside (1) was determined to be (4E,8E,2S,3R,2R)-N-2-hydroxypalmityl-1-O--D-glucopyranosyl-9-methyl-4,8-sphingadienine.
Cerebroside ausFomitopsis pinicola (Sw. Ex Fr.) Karst.
Zusammenfassung Aus den Fruchtkörpern vonfomitopsis pinicola wurde ein Cerebrosidgemisch erhalten und durch Säulenchromatographie und HPLC in sechs Verbindungen aufgetrennt. Der Zuckerbaustein aller Cerebroside warD-Glucose. Die Fettsäurekomponenten waren 2-Hydroxyfettsäuren mit einer Kettenlänge zwische C14 und C18. Der Basenteil konnte als 9-Methyl-C18-4,8-sphingadienin identifiziert werden. Diese Verbindung ist in Pilzen weit verbreitet und für die Fruchtbildung verantwortlich. Aus Abbaustudien, FAB-MS und verschiedenen1H- und13C-NMR-Messungen wurde die Struktur des Hauptcerebrosids (1) als (4E,8E,2S,3R,2R)-N-2-hydroxypalmityl-1-O--D-glucopyranosyl-9-methyl-4,8-sphingadienin ermittelt.
  相似文献   
2.
We proposed a decisive role of the number of metal ions at the sugar binding site for carbohydrate-coordinating copper(II) complexes. To verify this hypothesis, we studied the binding of the representatively chosen carbohydrates D-ribose (7), D-mannose (8), D-glucose (9), and D-maltose (10) to structurally related mono- and dinuclear copper(II) complexes in alkaline solution. All carbohydrates coordinate to the metal complexes in a 1:1 molar ratio. Coordination of 7 or 8 to the dinuclear copper(II) complex 1 is about 0.5 order of magnitude stronger than the complex formation with related mononuclear complexes. On contrast, 9, which is an epimer of 8, coordinates stronger to either one of the mononuclear copper(II) complexes in alkaline aqueous solution.  相似文献   
3.
4.
5.
A dinuclear copper(II) Schiff-base complex was immobilized in a poly(acrylate) matrix by emulsion polymerization. The spheric microbeads were used for aerobic catalytic oxidation of 3,5-di-tert-butylcatechol into 3,5-di-tert-butylquinone in methanol at ambient temperature to study the contribution of the macromolecular matrix to the overall rate acceleration of the reaction. The polymeric catalyst catalyzes the oxidation about 1 order of magnitude faster (kcat/knon = 470,000) than its low molecular weight analogue (kcat/knon = 60,000).  相似文献   
6.
7.
We investigated the complex formation between various underivatized carbohydrates and the binuclear copper(II) complex 1, Cu(2)(bpdpo). A combined approach of UV/vis and CD spectroscopic investigations shows a large discrimination ability of 1 for structurally closely related monosaccharides in alkaline solution. The dominating form of the binuclear copper(II) complex consists of a [Cu(2)L(-)(H)(OH)(2)](+) species between pH 11 and 13, as determined from pH-dependent spectrophotometric titration experiments. The binding strengths of the 1:1 sugar-1 complexes, derived from the biologically important monosaccharides d-mannose (3) and d-glucose (5), is about 1.5 orders of magnitude different at pH 12.40. Moreover, a blue- or a red-shift of the absorption maximum of 1 accompanies the sugar binding and highlights the ability of 1 to discriminate carbohydrates. This phenomenon is due to the number of hydroxyl groups of the particular monosaccharide involved in chelation to the binuclear metal complex.  相似文献   
8.
A series of N-benzylgalactonoamidines was synthesized to probe their inhibitory ability during the hydrolysis of o-nitrophenyl-β-d-galactopyranoside by β-galactosidase (Aspergillus oryzae). All compounds are characterized as potent competitive inhibitors with inhibition constants (Ki) in the low nanomolar range (12–48 nM). The structure of the inhibitors mimics the bond-lengthening during the hydrolysis and the aromatic aglycon of the substrate. The electronic nature of the substituent in p-position of the aglycon influences the overall inhibitory ability most when compared to the unsubstituted parent compound.  相似文献   
9.
For better understanding and improving the non‐covalent interactions of dendritic core–shell, we evaluated the interactions of hyperbranched poly(ethylene imine) (PEI) decorated with various oligosaccharide shells with water‐soluble B vitamins, an estradiol derivative and pantoprazole. Depending on the different properties of the analyte molecules, dendritic core–shell glyco architectures showed (very) weak, moderate and strong interactions with the analyte molecules. Thus, ionic interactions are the strongest driving force for the formation of host–guest complexes. The core–shell glyco architecture is a necessary prerequisite for stable analyte/PEI complexes; the pure hyperbranched PEI did not show any sufficiently strong interactions with neutral, cationic or anionic analytes under the shear forces applied during ultrafiltration of pure aqueous solution without an adjusted pH. Thus, only robust non‐covalent interactions between analytes and the dendritic polyamine scaffold of the glycopolymer structure survive this separation step and allow isolation of stable host–guest complexes in aqueous solution.  相似文献   
10.
A dormant macromolecular catalyst was prepared by polymerization of an aqueous styrene-butyl acrylate miniemulsion in the presence of a new polymerizable pentadentate ligand. The catalyst was activated by binding Cu(II) ions to the ligand site and then explored for its ability to hydrolyze glycosidic bonds in alkaline solution. The performance was correlated to the catalytic activity shown by low molecular weight analogs. A turnover rate of up to 43 × 10(-4) min(-1) was previously observed for cleavage of the glycosidic bond in selected p-nitrophenylglycosides with a binuclear, low molecular weight catalyst; by contrast, the same reaction is more than 1 order of magnitude faster and has a turnover rate of up to 380 × 10(-4) min(-1) when using the prepared macromolecular catalyst. The catalyzed hydrolysis is about 10(5)-fold accelerated over the uncatalyzed background reaction under the provided conditions, while a significant discrimination of the α- and β-glycosidic bond or of the galacto- and gluco-configuration in the sugar moiety in the glycoside substrates is not observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号