首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
化学   8篇
力学   1篇
数学   1篇
物理学   20篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2005年   3篇
  1999年   5篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1986年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
7.
The diffusion of a solute, fluorescein, into lysozyme protein crystals with different pore structures was investigated. To determine the diffusion coefficients, three-dimensional solute concentration fields acquired by confocal laser scanning microscopy (CLSM) during diffusion into the crystals were compared with the output of a time-dependent 3-D diffusion model. The diffusion process was found to be anisotropic, and the degree of anisotropy increased in the order: triclinic, tetragonal and orthorhombic crystal morphology. A linear correlation between the pore diffusion coefficients and the pore sizes was established. The maximum size of the solute, deduced from the established correlation of diffusion coefficients and pore size, was 0.73 +/- 0.06 nm, which was in the range of the average diameter of fluorescein (0.69 +/- 0.02 nm). This proves that size exclusion is the key mechanism for solute diffusion in protein crystals. Hence, the origin of solute diffusion anisotropy can be found in the packing of the protein molecules in the crystals, which determines the crystal pore organization.  相似文献   
8.
9.
Adsorption characteristics of cross-linked lysozyme crystals of different morphologies (tetragonal, orthorhombic, triclinic and monoclinic) were examined using four anionic dyes (fluorescein, eosin, erythrosin, and rose bengal), one zwitterionic dye (rhodamine B), and one cationic dye (rhodamine 6G). The adsorption isotherms were of the Langmuir type for all examined systems with the exception of rhodamine B adsorption by monoclinic crystals. The weakest adsorption was observed for the cationic dye, rhodamine B, whereas dianionic dyes, eosin, rose bengal, and erythrosin were strongly adsorbed on the protein surface. The adsorption capacities of the crystals for the dyes were found to depend on both charge and hydrophobicity of the dye, reflecting the heterogeneous character of the lysozyme pore surface. The adsorption affinity of the crystals for the dyes was a function of the dyes' hydrophobicity. Furthermore, the crystal morphology was identified as an additional factor determining capacity and affinity for dye adsorption. Differences between crystals prepared in the presence of the same precipitant were lower than between morphologies prepared with different precipitants.  相似文献   
10.
A procedure is explained to determined the amount of several pairs of diametrical loads applied to the outside boundary of a ring when stresses at selected points of the inside or outside boundaries are known. Coefficients of influence are used, following an approach similar to the one presented in a previous paper. Examples of application are given and the possible increase in precision is shown when the number of points of measurements is larger than the number of loads to be determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号