首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   8篇
晶体学   1篇
数学   1篇
  2005年   2篇
  2004年   3篇
  2002年   2篇
  2001年   1篇
  1998年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The novel NAD+-linked opine dehydrogenase from a soil isolate Arthrobacter sp. strain 1C belongs to an enzyme superfamily whose members exhibit quite diverse substrate specificites. Crystals of this opine dehydrogenase, obtained in the presence or absence of co-factor and substrates, have been shown to diffract to beyond 1.8 ? resolution. X-ray precession photographs have established that the crystals belong to space group P21212, with cell parameters a = 104.9, b = 80.0, c = 45.5 ? and a single subunit in the asymmetric unit. The elucidation of the three-dimensional structure of this enzyme will provide a structural framework for this novel class of dehydrogenases to enable a comparison to be made with other enzyme families and also as the basis for mutagenesis experiments directed towards the production of natural and synthetic opine-type compounds containing two chiral centres.  相似文献   
2.
Bistable [2]rotaxanes display controllable switching properties in solution, on surfaces, and in devices. These phenomena are based on the electrochemically and electrically driven mechanical shuttling motion of the ring-shaped component, cyclobis(paraquat-p-phenylene) (CBPQT(4+)) (denoted as the ring), between a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) ring system located along a dumbbell component. When the ring is encircling the TTF unit, this co-conformation of the rotaxane is the most stable and thus designated the ground-state co-conformer (GSCC), whereas the other co-conformation with the ring surrounding the DNP ring system is less favored and so designated the metastable-state co-conformer (MSCC). We report here the structure and properties of self-assembled monolayers (SAMs) of a bistable [2]rotaxane on Au (111) surfaces as a function of surface coverage based on atomistic molecular dynamics (MD) studies with a force field optimized from DFT calculations and we report several experiments that validate the predictions. On the basis of both the total energy per rotaxane and the calculated stress that is parallel to the surface, we find that the optimal packing density of the SAM corresponds to a surface coverage of 115 A(2)/molecule (one molecule per 4 x 4 grid of surface Au atoms) for both the GSCC and MSCC, and that the former is more stable than the latter by 14 kcal/mol at the optimum packing density. We find that the SAM retains hexagonal packing, except for the case at twice the optimum packing density (65 A(2)/molecule, the 3 x 3 grid). For the GSCC and MSCC, investigated at the optimum coverage, the tilt of the ring with respect to the normal is theta = 39 degrees and 61 degrees, respectively, while the tilt angle of the entire rotaxane is psi = 41 degrees and 46 degrees , respectively. Although the tilt angle of the ring decreases with decreasing surface coverage, the tilt angle of the rotaxane has a maximum at 144 A(2)/molecule (the 4 x 5 grid/molecule) of 50 degrees and 51 degrees for the GSCC and MSCC, respectively. The hexafluorophosphate counterions (PF(6)(-)) stay localized around the ring during the 2 ns MD simulation. On the basis of the calculated density profile, we find that the thickness of the SAM is 40.5 A at the optimum coverage for the GSCC and 40.0 A for MSCC, and that the thicknesses become less with decreasing surface coverage. The calculated surface tension at the optimal packing density is 45 and 65 dyn/cm for the GSCC and MSCC, respectively. This difference suggests that the water contact angle for the GSCC is larger than for the MSCC, a prediction that is verified by experiments on Langmuir-Blodgett monolayers of amphiphilic [2]rotaxanes.  相似文献   
3.
Starched carbon nanotubes   总被引:9,自引:0,他引:9  
  相似文献   
4.
Computable error bounds for pointwise derivatives of a Neumann problem   总被引:1,自引:0,他引:1  
In this paper we discuss the recovery of derivatives and thecomputation of rigorous and useful upper bounds for the pointwiseerror in the recovered derivatives, for finite element approximationsof the Laplace equation with Neumann boundary conditions, especiallyat points close to or on a smooth, curved boundary. We analyzethe dipole image technique for the case of curved boundaries,and show how to compute reliable recovered derivatives and errorbounds even in the limiting case of points lying on the curvedboundary. Numerical experiments show reasonably tight errorbounds for points both close to and away from a curved boundary.  相似文献   
5.
We report on the kinetics and ground-state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular-switch tunnel junctions (MSTJs). For all rotaxanes a pi-electron-deficient cyclobis(paraquat-p-phenylene) (CBPQT4+) ring component encircles one of two recognition sites within a dumbbell component. Two rotaxanes (RATTF4+ and RTTF4+) contain tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) recognition units, but different hydrophilic stoppers. For these rotaxanes, the CBPQT4+ ring encircles predominantly (>90 %) the TTF unit at equilibrium, and this equilibrium is relatively temperature independent. In the third rotaxane (RBPTTF4+), the TTF unit is replaced by a pi-extended analogue (a bispyrrolotetrathiafulvalene (BPTTF) unit), and the CBPQT4+ ring encircles almost equally both recognition sites at equilibrium. This equilibrium exhibits strong temperature dependence. These thermodynamic differences were rationalized by reference to binding constants obtained by isothermal titration calorimetry for the complexation of model guests by the CBPQT4+ host in acetonitrile. For all bistable rotaxanes, oxidation of the TTF (BPTTF) unit is accompanied by movement of the CBPQT4+ ring to the DNP site. Reduction back to TTF0 (BPTTF0) is followed by relaxation to the equilibrium distribution of translational isomers. The relaxation kinetics are strongly environmentally dependent, yet consistent with a single electromechanical-switching mechanism in acetonitrile, polymer electrolyte gels, and MSTJs. The ground-state equilibrium properties of all three bistable [2]rotaxanes were reflective of molecular structure in all environments. These results provide direct evidence for the control by molecular structure of the electronic properties exhibited by the MSTJs.  相似文献   
6.
7.
8.
9.
The influences of different physical environments on the thermodynamics associated with one key step in the switching mechanism for a pair of bistable catenanes and a pair of bistable rotaxanes have been investigated systematically. The two bistable catenanes are comprised of a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring, or its diazapyrenium-containing analogue, that are interlocked with a macrocyclic polyether component that incorporates the strong tetrathiafulvalene (TTF) donor unit and the weaker 1,5-dioxynaphthalene (DNP) donor unit. The two bistable rotaxanes are comprised of a CBPQT4+ ring, interlocked with a dumbbell component in which one incorporates TTF and DNP units, whereas the other incorporates a monopyrrolotetrathiafulvalene (MPTTF) donor and a DNP unit. Two consecutive cycles of a variable scan rate cyclic voltammogram (10-1500 mV s(-1)) performed on all of the bistable switches (approximately 1 mM) in MeCN electrolyte solutions (0.1 M tetrabutylammonium hexafluorophosphate) across a range of temperatures (258-303 K) were recorded in a temperature-controlled electrochemical cell. The second cycle showed different intensities of the two features that were observed in the first cycle when the cyclic voltammetry was recorded at fast scan rates and low temperatures. The first oxidation peak increases in intensity, concomitant with a decrease in the intensity of the second oxidation peak. This variation changed systematically with scan rate and temperature and has been assigned to the molecular mechanical movements within the catenanes and rotaxanes of the CBPQT4+ ring from the DNP to the TTF unit. The intensities of each peak were assigned to the populations of each co-conformation, and the scan-rate variation of each population was analyzed to obtain kinetic and thermodynamic data for the movement of the CBPQT4+ ring. The Gibbs free energy of activation at 298 K for the thermally activated movement was calculated to be 16.2 kcal mol(-1) for the rotaxane, and 16.7 and 19.2 kcal mol(-1) for the bipyridinium- and diazapyrenium-based bistable catenanes, respectively. These values differ from those obtained for the shuttling and circumrotational motions of degenerate rotaxanes and catenanes, respectively, indicating that the detailed chemical structure influences the rates of movement. In all cases, when the same bistable compounds were characterized in an electrolyte gel, the molecular mechanical motion slowed down significantly, concomitant with an increase in the activation barriers by more than 2 kcal mol(-1). Irrespective of the environment--solution, self-assembled monolayer or solid-state polymer gel--and of the molecular structure--rotaxane or catenane--a single and generic switching mechanism is observed for all bistable molecules.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号