首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   18篇
力学   1篇
物理学   2篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  1994年   1篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.
2.
3.
Journal of Solid State Electrochemistry - The preparation of collector- and binder-free, high-energy density cathodes made from carbon-coated LiFePO4 (C-LFP) and single-walled carbon nanotubes...  相似文献   
4.
Poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1,4-naphthoquinone)-modified electrode is used for the direct electrochemical detection of oligonucleotide hybridization. The polymer film presents well-defined electroactivity in the cathodic potential domain (between 0 and -0.8 V/SCE), due to the quinone group embedded into the polymer structure. The detection can be performed simply by square wave voltammetry. This sensor is a "signal-on" device and works with different oligonucleotide lengths, from 10 to 30 bases. Quantitative results from fluorescence are consistent with electrochemical data. It is confirmed that the signal increase in square wave voltammetry is unambiguously due to hybridization. The biosensor presents a detection limit of target of ca. 25 nM and is highly selective as it can discriminate single mismatch base.  相似文献   
5.
In this paper, we focus on extended informational measures based on a convex function ϕ: entropies, extended Fisher information, and generalized moments. Both the generalization of the Fisher information and the moments rely on the definition of an escort distribution linked to the (entropic) functional ϕ. We revisit the usual maximum entropy principle—more precisely its inverse problem, starting from the distribution and constraints, which leads to the introduction of state-dependent ϕ-entropies. Then, we examine interrelations between the extended informational measures and generalize relationships such the Cramér–Rao inequality and the de Bruijn identity in this broader context. In this particular framework, the maximum entropy distributions play a central role. Of course, all the results derived in the paper include the usual ones as special cases.  相似文献   
6.
Zhang QD  Piro B  Noël V  Reisberg S  Pham MC 《The Analyst》2011,136(5):1023-1028
We report here a new strategy to graft both redox and DNA probes on carbon nanotubes to make a label-free DNA sensor. Oxidized single-walled carbon nanotubes are first immobilized on a self-assembled monolayer of cysteamine; then the redox probe, a quinone derivative 3-[(2-aminoethyl)sulfanyl-5-hydroxy-1,4-naphthoquinone], is grafted on the free carboxylic groups of the nanotubes. After that, for DNA probe grafting, new carboxylic sites are generated via an aryl diazonium route. After hybridization with a complementary sequence, the conformational changes of DNA could influence the redox kinetics of quinone, leading to a current increase of the redox signal, detected by square wave voltammetry. The system is selective, as it can discriminate a single mismatched sequence from the complementary one.  相似文献   
7.
It is widely believed that small gold clusters supported on an oxide surface and adsorbed at the site of an oxygen vacancy are negatively charged. It has been suggested that this negative charge helps a gold cluster adsorb oxygen and weakens the O-O bond to make oxidation reactions more efficient. Given the fact that an oxygen vacancy is electron rich and that Au is a very electronegative element, the assumption that the Au cluster will take electron density from the vacancy is plausible. However, the density functional calculations presented here show that the situation is more complicated. The authors have used the Bader method to examine the charge redistribution when a Aun cluster (n=1-7) binds next to or at an oxygen vacancy on rutile TiO2(110). For the lowest energy isomers they find that Au1 and Au3 are negatively charged, Au5 and Au7 are positively charged, and Au2, Au4, and Au6 exchange practically no charge. The behavior of the Aun isomers having the second-lowest energy is also unexpected. Au2, Au3, Au5, and Au7 are negatively charged upon adsorption and very little charge is transferred when Au4 and Au6 are adsorbed. These observations can be explained in terms of the overlap between the frontier molecular orbitals of the gold cluster and the eigenstates of the support. Aun with even n becomes negatively charged when the lowest unoccupied molecular orbital has a lobe pointing in the direction of the oxygen vacancy or towards a fivefold coordinated Ti (5c-Ti) located in the surface layer; otherwise it stays neutral. Aun with odd n becomes negatively charged when the singly occupied molecular orbital has a lobe pointing in the direction of a 5c-Ti located at the vacancy site or in the surface layer, otherwise it donates electron density into the conduction band of rutile TiO2(110) becoming positively charged.  相似文献   
8.
Change in the glass transition temperature, Tg, of poly(2,6-dimethyl phenylene oxide), PPO, due to the dissolved CO2 has been measured as a function of the gas pressure, p, using a high-pressure DSC cell. At 61.2 atm, the highest pressure studied, Tg is depressed by 31.6°C. The depression in Tg is found to be linear with pressure, with dTg/dp of ?0.5°C atm?1. The experimental results are in fair agreement with those calculated from a quasilattice solid-solution model for polymer-diluent systems. The present results, however, differ markedly from a recent investigation on PPO-CO2 system which reported a depression in Tg of 226°C at 60 atm and a dTg/dp of ?3.8°C atm?. © 1994 John Wiley & Sons, Inc.  相似文献   
9.
Several levels of theory, including both Gaussian-based and plane wave density functional theory (DFT), second-order perturbation theory (MP2), and coupled cluster methods (CCSD(T)), are employed to study Au6 and Au8 clusters. All methods predict that the lowest energy isomer of Au6 is planar. For Au8, both DFT methods predict that the two lowest isomers are planar. In contrast, both MP2 and CCSD(T) predict the lowest Au8 isomers to be nonplanar.  相似文献   
10.
We use density functional theory (DFT) to investigate the bonding of propene to small gas-phase gold clusters and to a Au(111) surface. The desorption energy trends and the geometry of the binding sites are consistent with the following set of rules. (1) The bond of propene to gold is formed by donation of electron density from the highest occupied molecular orbital (HOMO) of propene to one of the low-lying empty orbitals [denoted by LUMO1, LUMO2, em leader (LUMO-lowest unoccupied molecular orbital)] of the gold cluster. (2) Propene binds to a site on the Au cluster where one of the low-lying LUMOs protrudes in the vacuum. Different isomers (same cluster, but different binding sites for propene) correspond to sites where different low-lying LUMOs protrude in space. (3) The desorption energy of the lowest energy isomer correlates with the energy of the lowest empty orbital of the cluster; the lower the energy of that LUMO, the higher the desorption energy. (4) If the lowest-lying LUMO protrudes into space at two nonequivalent sites at the edge of a cluster, propene binds more strongly to the site with the lowest coordination. These rules are consistent with the calculated bond energies and geometries for [Au(n)(C(3)H(6))](q), for n=1-5 and n=8 and q=-1, 0, +1. Based on them we have made a number of predictions that have been confirmed by DFT calculations. The bond of propene to gold is strengthened as the net charge of the cluster varies from -1, to zero, to +1. Compared to a gas-phase cluster, a cluster on a support binds propene more strongly if the support takes electron density from the cluster (e.g., a Au cluster on a gold surface) and more weakly if the support donates electron density to the cluster (e.g., a Au cluster on an oxygen vacancy on an oxide surface).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号