首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   11篇
物理学   6篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
In this paper, the wave transmission from finite photonic crystals with multiple alternations is investigated using boundary element method (BEM). Since that, in these structures the alternation is not in all directions of space; the investigations of the frequency band gap with desired accuracy are not practical by analytical methods. Also, the frequency dispersion of dielectric rods is an effective parameter in photonic crystals, which this effect in our calculations has been considered. Due to the high capabilities of the BEM, the transmitted wave spectrum in the photonic crystal is calculated by changing the geometrical and optical parameters of the photonic crystal and applying more alternation in its structure and the position and width of the frequency band gap is investigated. Then, it is assumed that the photonic crystal with an arbitrary angle is rotated around the axis which is perpendicular on the crystal cross section and then, it is irradiated with a plan wave. The band gap of the photonic crystals with the desired structure, desired rotation angle and multiple alternations have been solved. Very low information volume, high speed and accuracy during the calculation and useable for any desired structures are the characteristics of this method.  相似文献   
2.
3.
In this study, regular-shaped magnetic-activated carbon nanocomposite (m-Fe3O4@ACCs) was synthesized and characterized with X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and the vibrating sample magnetometer (VSM) and was used as adsorbents for the removal of nitrotoluene compounds (NTCs) from water and industrial wastewater. The effective parameters on adsorption process, such as solution pH, shaking speed, contact time, and adsorbent dosage were optimized and the optimum amounts were 7 300 rpm, 10 min, and 1.2 g L–1, respectively. The contact time and adsorbent dosage are dependent parameters and hence were studied simultaneously. The results showed no significant loss in the adsorption capacity, and the adsorption efficiency of m-Fe3O4@ACCs could still be 90% in the 9th cycle. The equilibrium adsorption isotherm followed the Langmuir isotherm model describes the monolayer adsorption of NTCs on m-Fe3O4@ACCs, and the maximum adsorption capacities (qm) for 2-nitrotolouene, 2,6-dinitrotoluene, 2,4-dinitrotoluene, and 3,4-dinitrotoluene were found to be 144.93, 142.86, 166.67, and 153.85 mg g?l, respectively. The proposed process was successfully applied for the removal of NTCs from tap water and nitration process wastewater.  相似文献   
4.

The goal of this research was to investigate the feasibility of removing samarium and neodymium ions from solid matrix using Cyanex 921 in supercritical CO2. The effect of various parameters such as pressure, temperature, extraction time, and stoichiometry of the complexation reaction was studied and optimized. It was found that optimal parameters are, respectively, 9 and 11 MPa, 45°C, 30 min, and 1: 3 (metal: ligand) for both samarium and neodymium. The conditional formation constant for the complexation reaction of samarium and neodymium with Cyanex 921 in the supercritical fluid phase was calculated as log K d = 1.51 and log K d = 1.08, respectively.

  相似文献   
5.
Cobalt oxyhydroxide combination with graphene oxide (CoOOH@GO) as a novel conductive matrix is developed for high performance lithium/sulfur batteries. Enhancement retention of polysulfide species into matrix of cobalt oxyhydroxide anchored on graphene oxide flakes by strong chemical binding of carbon-sulfur is demonstrated. Sulfur incorporated in the sheet-like morphology of CoOOH@GO delivers high initial discharge specific capacity of 1190.85 mAh/g, which raises 260 mAh/g with respect to graphene oxide/sulfur (GO/S) as a cathode material. Furthermore, CoOOH@GO/S maintains the average coulombic efficiency of 96 % after 300 cycles at 1 C rate with capacity retention of about 61 %. Good current rate capability of CoOOH@GO/S cathode reveals that the resulting composite is open platform for electrolyte diffusion and fast ion transportation leading to the improved electrochemical performance of lithium/sulfur batteries.  相似文献   
6.
Nanosheet structures of copper oxide@graphene oxide (CuO@GO) composite were developed as a host material to embed sulphur nanoparticles for use as cathodes in lithium–sulphur (Li–S) batteries. The homogeneous immobilisation of sulphur in the conductive matrix of CuO@GO within a strong chemical bond between carbon and polysulphide intermediates through the Lewis acid function of CuO provides a high specific discharge capacity of the CuO@GO/S electrode in comparison with the GO/S nanocomposite. The CuO@GO/S cathode delivers a discharge capacity of 1048.95 mA h g-1, 841.74 mA h g-1, 736.49 mA h g-1, 695.17 mA h g-1, 643.86 mA h g-1, and 457.08 mA h g-1 at different current rates of 0.1 C, 0.4 C, 0.7 C, 0.8 C, 1 C, and 2 C, respectively. The application of CuO@GO/S maintains the average coulombic efficiency of 96 % after 300 cycles at 1 C rate with a capacity retention of approximately 55.8 %. The rapid ion transportation within the efficient physicochemical confinement of polysulphides confirmed the role of the CuO@GO/S nanocomposite as a promising cathode material for the next generation of high-energy density Li–S batteries.  相似文献   
7.
In this paper, the thermal behaviours of two organophosphorous compounds, N,N-dimethyl-N′,N′-diphenylphosphorodihydrazidic (NDD) and diphenyl amidophosphate (DPA), were studied by thermogravimetery (TG), differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques under non-isothermal conditions. The results showed that NDD melts about 185 °C before it decomposes. NDD decomposition occurs in two continuous steps, in the 190–410 °C temperature range. First thermal degradation stage for NDD results a broad exothermic peak in the DTA curve that is continued with a small exothermic peak at the end of decomposition process. On the other hand, applying TG-DTA techniques indicates that DPA melts about 150 °C before it decomposes. This compound decomposes in the temperature range of 230 to 330 °C in two steps. These steps are endothermic and exothermic, respectively. Activation energy and pre-exponential factor for the first step of decomposition of each compound were found by means of Kissinger method and were verified by Ozawa–Flynn–Wall method. Activation energy obtained by Kissinger method for the first stage of NDD and DPA decompositions are 138 and 170 KJ mol−1, respectively. Finally, the thermodynamic parameters (ΔG #, ΔH # and ΔS #) for first step decomposition of investigated organophosphorous were determined.  相似文献   
8.
We report on a method for the extraction of the lanthanide ions La(III), Sm(III), Nd(III) and Pr(III) using a carbon-ferrite magnetic nanocomposite as a new adsorbent, and their determination via flow injection ICP-OES. The lanthanide ions were converted into their complexes with 4-(2-pyridylazo)resorcinol, and these were adsorbed onto the nanocomposite. Fractional factorial design and central composite design were applied to optimize the extraction efficiencies to result in preconcentration factors in the range of 141–246. Linear calibration plots were obtained, the limits of detection (at S/N?=?3) are between 0.5 and 10 μg?L?1, and the intra-day precisions (n?=?3) range from 3.1 to 12.8 %. The method was successfully applied to a certified reference material.
Figure
Superparamagnetic activated carbon based nanocomposite was synthesized and applied for extraction and determination of some rare earth elements in water samples  相似文献   
9.
A rapid, selective, and sensitive cloud point extraction process using mixed micelle of a nonionic surfactant Triton X-114 and an anionic surfactant, SDS, to extract chlorine from aqueous solution was investigated. The method is based on the color reaction of chlorine with N,N-diethyl-p-phenylenediamine (DPD) in phosphate buffer media and cloud point extraction of the produced dye. Various factors and extraction and reaction conditions such as surfactant concentration and reagent concentration were studied and the analytical characteristics of the method (e.g. limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 3.0–450 ng/mL of chlorine and the detection limit of the method was 1.0 ng/mL. The interference effects of some cations and anions were also tested. The proposed method was successfully applied to the determination of free chlorine in drinking, river, well and pool swimming water samples.  相似文献   
10.
In this study, a steady-state heat transfer equation in a side-pumped Nd:YAG laser crystal is solved numerically using the Boundary Element Method (BEM). The temperature distribution and its gradient are calculated at arbitrary points inside the rod. Subsequently, by solving the ray equation and calculating the optical path integral along the length of the rod, the phase shift of the passing rays is obtained. Furthermore, this thermal phase shift is detected in practice by an interferometric experiment. Excellent agreement is observed between the calculated and experimental results.  相似文献   
1 [2] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号