首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
物理学   1篇
  2021年   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Purpose: Vascular targeted photodynamic therapy (VTP) is a nonsurgical tumor ablation approach used to treat early-stage prostate cancer and may also be effective for upper tract urothelial cancer (UTUC) based on preclinical data. Toward increasing response rates to VTP, we evaluated its efficacy in combination with concurrent PD-1 inhibitor/OX40 agonist immunotherapy in a urothelial tumor-bearing model. Experimental design: In mice allografted with MB-49 UTUC cells, we compared the effects of combined VTP with PD-1 inhibitor/OX40 agonist with those of the component treatments on tumor growth, survival, lung metastasis, and antitumor immune responses. Results: The combination of VTP with both PD-1 inhibitor and OX40 agonist inhibited tumor growth and prolonged survival to a greater degree than VTP with either immunotherapeutic individually. These effects result from increased tumor infiltration and intratumoral proliferation of cytotoxic and helper T cells, depletion of Treg cells, and suppression of myeloid-derived suppressor cells. Conclusions: Our findings suggest that VTP synergizes with PD-1 blockade and OX40 agonist to promote strong antitumor immune responses, yielding therapeutic efficacy in an animal model of urothelial cancer.  相似文献   
2.
The aim of this study was to investigate bubble/drop formation at a single submerged orifice in stagnant Newtonian fluids and to gain qualitative understanding of the formation mechanism. The effects of various governing parameters were studied. Formation behavior of bubbles and drops in Newtonian aqueous solutions were investigated experimentally under different operating conditions with various orifices. The results show that the volume of the detached dispersed phase (bubble or drop) increases with the viscosity of the continuous phase (or dispersion medium), surface tension, orifice diameter, and dispersed phase flow rate. A PIV system was employed to measure the velocity flow field quantitatively during the bubble/drop formation, giving interesting information useful for the elucidation of the fundamental formation process at the orifice. It was revealed that the orifice shape strongly influences the size of the bubble formed. Furthermore, based on a simple mass balance, a general correlation successfully predicting both bubble and drop sizes has been proposed.  相似文献   
3.
Quantitative measures of rheumatoid arthritis (RA) disease progression can provide valuable tools for evaluation of new treatments during clinical trials. In this study, a novel multispectral (MS) MRI analysis method is presented to quantify changes in bone lesion volume (DeltaBLV) in the hands of RA patients. Image registration and MS analysis were employed to identify MS tissue class transitions between two serial MRI exams. DeltaBLV was determined from MS class transitions between two time points. The following three classifiers were investigated: (a) multivariate Gaussian (MVG), (b) k-nearest neighbor (k-NN), and (c) K-means (KM). Unlike supervised classifiers (MVG, k-NN), KM, an unsupervised classifier, does not require labeled training data, resulting in potentially greater clinical utility. All MS estimates of DeltaBLV were linearly correlated (r(p)) with manual estimates. KM and k-NN estimates also exhibited a significant rank-order correlation (r(s)) with manual estimates. For KM, r(p) = 0.94 p < 0.0001, r(s) = 0.76 p = 0.002; for k-NN, r(p) = 0.86 p = 0.0001, r(s) = 0.69 p = 0.009; and for MVG, r(p) = 0.84 p = 0.0003, r(s) = 0.49 p = 0.09. Temporal classification rates were as follows: for KM, 90.1%; for MVG, 89.5%; and for k-NN, 86.7%. KM matched the performance of k-NN, offering strong potential for use in multicenter clinical trials. This study demonstrates that MS tissue class transitions provide a quantitative measure of DeltaBLV.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号