首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2022年   1篇
  2019年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.

In this paper, a new green pH-sensitive EDTA crosslinked HEC (cellulose-based hydrogel (swelling rate?~?1005%)) adsorbent was successfully elaborated. The synthesis of HEC-EDTA at the high advanced crosslinking degree (up to 92%), was carried out using DAEDT and DMAP as acyl transfer agent, where the lamellar morphology (2D-microstructure) was highly suggested based on the average functionality of the reaction system. The crosslinking degree was confirmed using structural analyzes (FTIR and 13C CP/MAS-NMR) and elemental profile analysis. The new EDTA crosslinked HEC demonstrated a high uptake capacity (~?2000 mg g?1) to aquatic micropollutants, especially methylene blue as cationic dyes model. The kinetic study showed that the adsorption process was well described by the pseudo-second-order kinetic, while the thermodynamic parameters exhibited a negative effect of temperature indicating a physical adsorption process. In addition, the adsorption capacity was studied varying to the experimental conditions (pH, contact time, concentration, etc.), and the Freundlich model revealed a strong correlation to the experimental data indicating an energetic heterogeneity of the surface active sites. Furthermore, using COMPASS II, the molecular dynamics (MD) simulations were conducted to optimize the chemical system, where the results showed the predominance of non-covalent molecular adsorbent-adsorbate interactions, which governs cluster design and configurations.

  相似文献   
3.
We present a microfluidic platform allowing dielectrophoresis‐assisted formation of cell aggregates of controlled size and composition under flow conditions. When specific experimental conditions are met, negative dielectrophoresis allows efficient concentration of cells towards electric field minima and subsequent aggregation. This bottom‐up assembly strategy offers several advantages with respect to the targeted application: first, dielectrophoresis offers precise control of spatial cell organization, which can be adjusted by optimizing electrode design. Then, it could contribute to accelerate the establishment of cell‐cell interactions by favoring close contact between neighboring cells. The trapping geometry of our chip is composed of eight electrodes arranged in a circle. Several parameters have been tested in simulations to find the best configurations for trapping in flow. Those configurations have been tested experimentally with both polystyrene beads and human embryonic kidney cells. The final design and experimental setup have been optimized to trap cells and release the created aggregates on demand.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号