首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Abstract

Three new classes of the amino acid based biodegradable (AABB) polymers were synthesized via step growth polymerization of bis-azlactones and amino acid based diamine-diesters with activated fatty diester and alkylenediamine: a) poly(ester amide)s (PEAs) were obtained by polymerization of bis-azlactones with diamine-diesters, b) hydrophobically modified co-poly(ester amide)s (co-PEAs) were synthesized by copolymerization of activated fatty diacid diester and bis-azlactones with diamine-diesters, and c) poly(ester amide-co-amide)s (PEA-co-PAs) were obtained by copolymerization of alkylene diamine and diamine-diesters with bis-azlactones. The new poly(ester amide)s showed relatively low-molecular-weights (Mw within 2,800–19,600?Da, GPC in DMF), whereas the new co-poly(ester amide)s and poly(ester amide-co-amide)s exhibited high-molecular-weights (Mw within 40–100?kDa) leading to good mechanical properties. Incorporation of the bis-azlactone fragments into the poly(ester amide)s backbone increased hydrophobicity and thermal stability, whereas incorporation of diamine-diester units into the backbone of the bis-azlactone based polyamides rendered them biodegradable. Synthesized AABB polymers are potential candidates for constructing resorbable surgical and pharmaceutical devices.  相似文献   
2.
Short, complementary DNA single strands with mismatched base pairs cannot undergo spontaneous formation of duplex DNA (dsDNA). Mismatch binding ligands (MBLs) can compensate this effect, inducing the formation of the double helix and thereby acting as a molecular glue. Here, we present the rational design of photoswitchable MBLs that allow for reversible dsDNA assembly by light. Careful choice of the azobenzene core structure results in excellent band separation of the E and Z isomers of the involved chromophores. This effect allows for efficient use of light as an external control element for duplex DNA formation and for an in-depth study of the DNA–ligand interaction by UV-Vis, SPR, and CD spectroscopy, revealing a tight mutual interaction and complementarity between the photoswitchable ligand and the mismatched DNA. We also show that the configuration of the switch reversibly dictates the conformation of the DNA strands, while the dsDNA serves as a chiral clamp and translates its chiral information onto the ligand inducing a preference in helical chirality of the Z isomer of the MBLs.

We present the rational design of photoswitchable DNA glue to trigger the reversible formation of duplex DNA by light. The supramolecular assembly shows a mutual interaction between ligand and DNA, which induces a preferred helicity in the switch.  相似文献   
3.
Since the seminal contribution of Rolf Huisgen to develop the [3+2] cycloaddition of 1,3-dipolar compounds, its azide–alkyne variant has established itself as the key step in numerous organic syntheses and bioorthogonal processes in materials science and chemical biology. In the present study, the copper(I)-catalyzed azide–alkyne cycloaddition was applied for the development of a modular molecular platform for medical imaging of the prostate-specific membrane antigen (PSMA), using positron emission tomography. This process is shown from molecular design, through synthesis automation and in vitro studies, all the way to pre-clinical in vivo evaluation of fluorine-18- labeled PSMA-targeting ‘F-PSMA-MIC’ radiotracers (t1/2=109.7 min). Pre-clinical data indicate that the modular PSMA-scaffold has similar binding affinity and imaging properties to the clinically used [68Ga]PSMA-11. Furthermore, we demonstrated that targeting the arene-binding in PSMA, facilitated through the [3+2]cycloaddition, can improve binding affinity, which was rationalized by molecular modeling. The here presented PSMA-binding scaffold potentially facilitates easy coupling to other medical imaging moieties, enabling future developments of new modular imaging agents.  相似文献   
4.
Photopharmacology is an attractive approach for achieving targeted drug action with the use of light. In photopharmacology, molecular photoswitches are introduced into the structure of biologically active small molecules to allow for the optical control of their potency. Going beyond trial and error, photopharmacology has progressively applied rational drug design methodologies to devise light-controlled bioactive ligands. In this review, we categorize photopharmacological efforts from the standpoint of medicinal chemistry strategies, focusing on diffusible photochromic ligands modified with photoswitches that operate through E-Z bond isomerization. In the vast majority of cases, photoswitchable ligands are designed as analogs of existing compounds, through a variety of approaches. By analyzing in detail a comprehensive list of instructive examples, we describe the state of the art and discuss future opportunities for rational design in photopharmacology.  相似文献   
5.
Biodegradable polymers having a potential for constructing resorbable therapeutical micro- and nano-containers were synthesized by interaction of bis-azlactones with bis-(L-leucine)-1,6-hexylene diester/1,6-diamino hexane either separately or as comonomers. The thermograms (DSC) all of them showed a wide endothermal peak within 55–120 °C with a maximum ranged from 86 °C to 96 °C. The peak was assigned to the melting of hydrophobic domains formed by aromatic terephthalic acid fragments in the polymeric backbones. Preliminary in vitro study showed that the ester-bonds containing polymers obtained are biodegradable – α-chymotrypsin catalyzed ester bonds hydrolysis rates ranged within 0.02–0.34 µmole/min.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号