首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   15篇
物理学   5篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2005年   1篇
排序方式: 共有20条查询结果,搜索用时 93 毫秒
1.
A systematic study on the water-intake capacity of the microemulsion formed using a catanionic surfactant (synthesized by taking equimolar mixture of acid and amine) with varying hydrocarbon chain length of the acid has been carried out. A decrease in the water-intake capacity with increase in the chain length was observed. Shorter chain length of co-surfactant (1-butanol compared to 1-octanol) led to higher water-intake capacity of microemulsions which may also be attributed to the high hydrophilic-lipophilic balance (HLB) of 1-butanol. Three new microemulsions based on catanionic surfactants have been used to synthesize quantum dots of CdS. The size of CdS quantum dots decreased with increase in chain length of the acid component of the catanionic surfactant.  相似文献   
2.
Salicylaldimine Schiff bases represent an important class of hetero‐polydentate ligands capable of forming mononuclear, binuclear, and polynuclear complexes with transition and non‐transition metals. In this report, we developed an easy synthesis of BODIPY‐based salicylaldimine Schiff bases and synthesized five new derivatives. These were characterized by elemental analysis, infrared, UV‐Vis, nuclear magnetic resonance spectroscopy, and X‐ray crystallography. Finally, one of the Schiff bases was reacted with BF3·OEt2 to synthesize corresponding bis‐BF2 boron complex. The photophysical and electrochemical properties of the Schiff bases and the boron complex were evaluated and rationalized by theoretical calculations. The bis‐BF2 boron complex showed excited state charge redistribution, thus could be useful as sensitizers for designing new dye‐sensitized solar cells.  相似文献   
3.
The present article describes the synthesis and characterization of tetracoordinated boron (III) complexes with monobasic bidentate ligands (L 1 H, L 2 H, L 3 H, L 4 H, L 5 H, and L 6 H) having the general formulae PhB(L)(OH) and PhB(L) 2 . The 1:1 and 1:2 reactions of phenyl boronic acid with monobasic bidentate ligands resulted in the formation of colored solids. The complexes have been characterized by elemental analysis, molecular weight determinations, and IR and NMR ( 1 H, 13 C and 11 B) spectroscopy, as well as UV-vis spectral studies. Based on these studies, a tetrahedral geometry has been proposed for the resulting complexes. The ligands, along with their complexes, have been screened in vitro against a number of pathogenic fungal and bacterial strains. The studies indicate that the boron chelates are more potent than the parent ligands.  相似文献   
4.
Synthesis of highly functionalized 2(1H)-pyrazinone 3-carboxamide derivatives is reported. A one-pot, two-step process including the base-mediated reaction of N,N-disubstituted aminoacetonitrile derivatives 18 with 3,5-dihalo-2(1H)-pyrazinones 1 afforded substituted aminoacetonitrile pyrazinone derivative 19, which on subsequent oxidation followed by transamidation of the resulting intermediate with primary or secondary amines gave the corresponding highly functionalized 2(1H)-pyrazinone 3-carboxamide derivatives 21.  相似文献   
5.
6.
The reactions of triorgano-gallium and -indium etherate with salen ligands in benzene afforded complexes of the type [R2MOC6H4CR′NCH2-]2, (R/M/R′ = Me/Ga/H (1), Et/Ga/H (2), Me/In/H (3), Et/Ga/Me (4)) in nearly quantitative yields. These complexes have been characterized by elemental analysis, IR, UV-Vis, NMR (1H and 13C{1H}) and mass spectral data. The organogallium complexes showed photoluminescence in blue-green region. The complex, [(Me2Ga)2(O-(C6H4)CHN-CH2-)2] on recrystallization from benzene-hexane and dichloromethane gave orthorhombic and monoclinic forms, respectively. Both the forms are dimeric with gallium atoms acquiring a distorted tetrahedral configuration defined by two methyl groups, phenolate oxygen and azomethene nitrogen. The complexes [(Me2Ga)2(O-(C6H4)CHN-CH2-)2] and [(Me2In)2(O-(C6H4)CHN-CH2-)2] have been employed as alkylating agent for C-C coupling reaction of 1-bromonaphthalene in presence of PdCl2(PPh3)2.  相似文献   
7.
Methylindium(III) dithiolate complexes of the general formulae [Me2In(SS)] ( 1 ) and [MeIn(SS)2] ( 2 ) [SS = (EtO)2PS2?, (PriO)2PS2?, Et2NCS2?, , O(CH2CH2)2NCS2?, EtOCS2? and PriOCS2?] have been isolated conveniently by the reaction of Me3In·OEt2 with In(SS)3 ( 3 ) in an appropriate stoichiometry. Both 1 and 2 have been characterized by indium analysis, IR, NMR (1H, 13C{1H} and 31P{H}) and mass spectral data. NMR data of 3 are also included for comparison. The Me–In and SS resonances are sensitive to the number of methyl groups attached to indium metal. The mass spectral data indicate that these complexes are monomeric in nature. The thermal behavior of a few complexes has been investigated. The xanthate and dithiocarbamate complexes on pyrolysis under dynamic vacuum or flowing nitrogen atmosphere gave either In2S3 or a mixture of InS, In2S3 and In6S7, which were characterized using EDAX and powder XRD. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
8.
9.
Two different shell-forming reagents viz. titanium isopropoxide and titanium hydroxyacylate, have been employed to obtain core–shell nanostructures of Ag@TiO2. However, nanocomposites were formed when the shell-forming agent, titanium isopropoxide, was added before breaking the micelles. Titanium hydroxyacylate has been used for the first time as a shell-forming agent which resulted in uniform core–shell structures of Ag@TiO2 with core diameter ranging from 10 to 40 nm and a shell thickness of 10–50 nm. The low rate of hydrolysis of titanium hydroxyacylate than titanium isopropoxide (used in other methods) appears to be responsible for the uniform shell thickness. The presence of capping agent (2-mercaptoethanol) disrupts the formation of a uniform shell structure of Ag@TiO2. HRTEM, IR, and XPS studies of Ag@TiO2 synthesized using capping agent show the formation of Ag2S coated with an amorphous layer of TiO2. A red shift of 25 and 10 nm was observed in the surface plasmon band of silver for Ag@TiO2 core–shell structures (compared with that of silver nanoparticles) synthesized using titanium hydroxyacylate and titanium isopropoxide, respectively. The presence of capping agent (2-mercaptoethanol) masks the surface plasmon peak. Photoluminescence studies show an increase in the emission intensity for the core–shell structures when compared to that of TiO2 nanoparticles.  相似文献   
10.
Using hollow silica nanoparticles we demonstrate a simple and highly efficient way of removing hydrophilic dye (Rhodamine B) from water by encapsulation within these hollow spheres. The hollow silica spheres were obtained by using a surfactant templated procedure. Using fluorescence spectroscopy, we also show the evidence of the dye being absorbed within the hollow core of the silica shell (which is crucial for many applications) and differentiate from the adsorption of dye on the surface of the silica shell. It was found that that up to 94 % of the hydrophilic dye could be entrapped using these hollow shells within 72 h of exposure. Fluorescence spectroscopy shows a red shift in the dye encapsulated in the hollow silica which is due to aggregation of the dye and enables us to follow quantitatively the uptake of the dye molecules by the silica shells with time. The evidence for the encapsulation of the dye in these hollow spheres was reinforced by carrying out a comparative study, using solid silica particles.
Evidence of encapsulation of dye in hollow silica by fluorescence spectroscopy  相似文献   
1 [2] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号