首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2023年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Molecular p-dopants designed to undergo electron transfer with organic semiconductors are typically planar molecules with high electron affinity. However, their planarity can promote the formation of ground-state charge transfer complexes with the semiconductor host and results in fractional instead of integer charge transfer, which is highly detrimental to doping efficiency. Here, we show this process can be readily overcome by targeted dopant design exploiting steric hindrance. To this end, we synthesize and characterize the remarkably stable p-dopant 2,2′,2′′-(cyclopropane-1,2,3-triylidene)tris(2-(perfluorophenyl)acetonitrile) comprising pendant functional groups that sterically shield its central core while retaining high electron affinity. Finally, we demonstrate it outperforms a planar dopant of identical electron affinity and increases the thin film conductivity by up to an order of magnitude. We believe exploiting steric hindrance represents a promising design strategy towards molecular dopants of enhanced doping efficiency.  相似文献   
2.
Non-noble metal Ni with different loadings was coated on precipitated CeO2–ZrO2 support by the sonochemistry method and examined for catalytic wet air oxidation of phenol. The structure of the nanocatalysts was determined by BET, FESEM, XRD, and FTIR analyses. The results showed non-uniform morphology of the nanocatalyst at lower Ni contents changed to homogenous morphology with spherical nano particles at higher Ni contents. While the size of NiO crystals remained constant with rising Ni content, the crystallinity of NiO significantly increased. If the crystallinity of NiO was 100% in 20% wt Ni/CeO2–ZrO2, the crystallinity of NiO in 5% wt Ni was found to be 41.13%. The average particle size in Ni(15%)/CeO2–ZrO2 was 77 nm in which 85.71% of particle diameters were less than 100 nm. Catalytic wet air oxidation of phenol with different Ni loadings indicated improvement of phenol destruction at higher amounts of active phase. Removal of phenol increased with increasing catalyst loading from 4 to 9.0 g/l but further increase to 10 g/l declined the catalyst reactivity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号