首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   4篇
化学   75篇
综合类   1篇
数学   5篇
物理学   11篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   7篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   9篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
Karami  Solmaz  Bayat  Mohammad  Nasri  Shima  Mirzaei  Faezeh 《Molecular diversity》2021,25(4):2053-2062
Molecular Diversity - This study describes the use of 3-aminotriazole, different aldehydes and N-methyl-1-(methylthio)-2-nitroethenamine as a ketene N,S-acetal in a three-component condensation for...  相似文献   
2.
A butyl rubber derivative that can be cured upon exposure to UV light in the absence of additional chemical additives was developed. This polymer was prepared by the reaction of hydroxyl-functionalized butyl rubber with cinnamoyl chloride to provide a cinnamate functionalized rubber. The cinnamate content was varied by starting with derivatives prepared from butyl rubber containing either 2 or 7 mol% isoprene. The kinetics of the cross-linking was studied by UV–visible spectroscopy and it was found to vary according to the film thickness. The changes in gel content and volume swelling ratio with irradiation time were dependent on the cinnamate content. Toxicity studies suggested that the cross-linked materials do not leach toxic molecules. The approach was also applied to obtain cross-linked films of butyl rubber-poly(ethylene oxide) graft copolymers, leading to surfaces that resisted the adhesion and growth of cells. Thus the approach is versatile and is of particular interest when non-leaching coatings of cross-linked butyl rubber are desired for biomedical or other applications.  相似文献   
3.
Boronic acid functionalized materials have gained much attention in both chemistry and biology fields due to their multivalent covalent interactions with cis-diol containing (macro) molecules. The remarkable progress in this field has resulted in the development of their biomedical applications, such as, biosensors and nanocarriers. In this study, the spherical nanoparticles consisting of glycerol and 2,5-thiophenediylbisboronic acid were synthesized by one-pot ring opening copolymerization of a mixture of glycidol and 2,5-thiophenediylbisboronic acid. The synthesized nanoparticles were used for the modification of the glassy carbon electrode and the determination of Guaifenesin. The synthesized polymeric nanoparticles were characterized by different spectroscopic and microscopic methods including UV–vis, IR, NMR, DLS, and SEM. Additionally, the electrochemical behavior of the fabricated electrode toward Guaifenesin was investigated with cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   
4.
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed.  相似文献   
5.
A magnetic solid phase extraction method based on agarose coated magnetic nanoparticles)ACMNPs(coupled to a new magnetic field agitation (MFA) device was developed and investigated for the separation, preconcentration and determination of Pd(II) in aqueous solutions. For the first time, the formation of the nanoparticles and their encapsulation in agarose micro-flakes was conducted in a single step. For this purpose, preparation of the magnetic iron oxide nanoparticles was performed in an alkaline agarose solution. The sizes of Fe3O4 nanoparticles and agarose micro-flakes were 10–14 nm and 90–130 μm, respectively. The nanomagnetic agarose particles were functionalized by iminodiacetic acid and subjected to magnetic field agitation in the MFA device. The influence of different analytical parameters such as pH, ionic strength, type and volume of desorption solvent and amount of the adsorbent on the preconcentration of Pd(II) were investigated. Eight replicated analysis at the optimized conditions, resulted in a recovery of 94.1% with an RSD of 5.2% for Pd(II). The detection limit of the method (3σ) was 47 ng L−1 for the analyte. The method was successfully applied to the determination of Pd(II) in natural water samples.  相似文献   
6.
Lignocellulosic biomass represents a great potential for biogas production. However, a suitable pretreatment is needed to improve their digestibility. This study investigates the effects of an organic solvent, N-Methylmorpholine-N-oxide (NMMO) at temperatures of 120 and 90 °C, NMMO concentrations of 75 and 85 % and treatment times of 3 and 15 h on the methane yield. The long-term effects of the treatment were determined by a semicontinuous experiment. The best results were obtained using 75 % NMMO at 120 °C for 15 h, resulting in 141 % increase in the methane production. These conditions led to a decrease by 9 % and an increase by 8 % in the lignin and in the carbohydrate content, respectively. During the continuous digestion experiments, a specific biogas production rate of 92 NmL/gVS/day was achieved while the corresponding rate from the untreated sample was 53 NmL/gVS/day. The operation conditions were set at 4.4 gVS/L/day organic loading rate (OLR) and hydraulic retention time (HRT) of 20 days in both cases. NMMO pretreatment has substantially improved the digestibility of forest residues. The present study shows the possibilities of this pretreatment method; however, an economic and technical assessment of its industrial use needs to be performed in the future.  相似文献   
7.
Research on Chemical Intermediates - The bismuth oxybromide (BiOBr) photocatalyst was first synthesized via a simple co-precipitation method. To improve the visible light photocatalytic activity of...  相似文献   
8.
Metal-carbon nanotube-graft-polymer (MCNT-g-P) nanocomposites were synthesized and characterized successfully. In this work, multiwall carbon nanotubes (MWCNT) were opened using HNO3/H2SO4 mixture and filled by metal nanoparticles such as silver nanoparticles through wet chemistry method. Then MWCNT containing metal nanoparticles were used as macroinitiator for ring opening polymerization of ε-caprolactone and MCNT-g-P nanocomposites were obtained. Length of grafted polymer arms onto the MWCNT was controlled using MWCNT/ε-caprolactone ratio. Structure and properties of nanocomposites were evaluated by TEM, DSC, TGA, and spectroscopy methods.  相似文献   
9.

Abstract  

The characterization of an optical sensor membrane is described for the determination of tin (II) based on the immobilization of dithizone on a triacetylcellulose membrane. The membrane responds to tin (II) ions by changing color reversibly from green to red in buffer solution at pH 6 and wavelength 611 nm. This optode has a linear range of 0.3–6.33 μg cm−3 (2.52–53.32 μmol dm−3) of Sn2+ ions with a limit of detection of 0.15 μg cm−3 (1.26 μmol dm−3). The response time of the optode was about 8–10 min depending on the concentration of Sn2+ ions. The selectivity of the optode to tin (II) ions at pH 6 was good. The sensor can be readily regenerated by exposure with EDTA solution. The color is fully reversible, and the optical sensor could be fully regenerated. Experimental results showed that the optode could be used as an effective tool in analyzing the tin content in canned foods.  相似文献   
10.
Bromate, which is a potential carcinogen, should be removed from drinking water to levels of less than 10 μg/L. A chitosan‐based molecularly imprinted polymer (MIP) and a sol–gel ion‐exchange double hydrous oxide (Fe2O3·Al2O3·xH2O) adsorbent (inorganic adsorbent) were prepared for this purpose. The sorption behavior of each adsorbent including sorption kinetics, isotherms, effect of pH and selective sorption were investigated in detail. Sorption experimental results showed that the MIP adsorbents had better selectivity for bromate, even in the presence of high concentrations of nitrate, as compared to the inorganic adsorbent. It was found that pH does not affect the adsorption of bromate when using the inorganic adsorbent. Additionally, both adsorbents were immobilized in a polymeric cryogel inside plastic carriers to make them more practical for using in larger scale. Regeneration of the cryogels either containing MIP or inorganic adsorbents were carried out by 0.1 M NaOH and 0.1 M NaCl, respectively. It was found that the regenerated MIP and inorganic adsorbents could be used at least three and five times, respectively, without any loss in their sorption capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号