首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   5篇
化学   39篇
晶体学   2篇
力学   1篇
数学   13篇
物理学   60篇
  2023年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   5篇
  2010年   2篇
  2009年   9篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Selecta Mathematica - For a reductive Lie algebra $$\mathfrak {g}$$ , its nilpotent element f and its faithful finite dimensional representation, we construct a Lax operator L(z) with coefficients...  相似文献   
5.
A molecularly imprinted polymer (MIP) for the specific retention of neopterin has been developed. A set of 6 polymers was prepared by radical polymerization under different experimental condition using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker, with the aim to understand their influence on the efficiency of the MIP. The performance of each MIP was tested in batch experiments via their binding capacity. The MIP prepared in the presence of nickel ions in dimethylsulfoxide-acetonitrile mixture (P4) exhibited the highest binding capacity for neopterin (260 μmol per gram of polymer). A selectivity study with two other pteridines demonstrated the polymer P4 also to possess the best selectivity.
Figure
A molecularly imprinted polymer for the specific retention of neopterin was developed. A set of 6 polymers was prepared under different experimental condition. The performance of each MIP was tested through their binding capacity. The MIP P4 prepared in the presence of nickel ions exhibited the highest binding capacity  相似文献   
6.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
7.
We show that the electronic and optical properties of silicon nanowires, with different size and orientation, are dominated by important many-body effects. The electronic and excitonic gaps, calculated within first principles, agree with the available experimental data. Huge excitonic effects, which depend strongly on wire orientation and size, characterize the optical spectra. Modeling porous silicon as a collection of interacting nanowires, we find an absorption spectrum which is in very good agreement with experimental measurements only when the electron-hole interaction is included.  相似文献   
8.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   
9.
We report a Ni‐catalyzed regioselective α‐carbonylalkylarylation of vinylarenes with α‐halocarbonyl compounds and arylzinc reagents. The reaction works with primary, secondary, and tertiary α‐halocarbonyl molecules, and electronically varied arylzinc reagents. The reaction generates γ,γ‐diarylcarbonyl derivatives with α‐secondary, tertiary, and quaternary carbon centers. The products can be readily converted to aryltetralones, including a precursor to Zoloft, an antidepressant drug.  相似文献   
10.
Sole D  Peidro E  Bonjoch J 《Organic letters》2000,2(15):2225-2228
The palladium-mediated intramolecular coupling of amino-tethered vinyl halides and ketone enolates is a useful methodology for the synthesis of nitrogen heterocycles and constitutes a new synthetic entry to the 2-azabicyclo[3.3.1]nonane framework. A study about the reaction conditions and the scope of the process is reported.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号