首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
This review summarizes the main achievements of the Boreskov Institute of Catalysis (Siberian Division, Russian Academy of Sciences) in the development of efficient and stable monolith catalysts for selective oxidation of hydrocarbons into synthesis gas at short contact times. Research in this field has included (1) design of new types of active component based on metal oxides, (2) design of new types of monolith support and development of supporting procedures for active components, and (3) optimization of process parameters for different types of fuel (natural gas, isooctane, and gasoline) and oxidant (air oxygen, including its mixtures with water and carbon dioxide), including the start-up regime. Design of active components (platinum, nickel, or their combination) supported on fluorite-like solid solutions based on cerium dioxide and rare-earth (samarium, gadolinium, and praseodymium) or zirconium cations has been aimed at separating hydrocarbon activation (on metal sites) and oxidation (on the support) and conjugating the separated steps of hydrocarbon oxidation at the metal-oxide interface. Optimization of oxygen mobility in the support lattice by varying the nature and concentration of doping cation along with optimization of hydrocarbon activation on supported metal clusters allow hydrocarbons to be completely converted into synthesis gas by selective oxidation or dry or steam reforming at contact times of a few milliseconds, ruling out undesirable carbon build-up on the catalyst surface. The development of new types of monolith support has targeted the enhancement of thermal shock resistance, including testing of supports based on thermally stable metal foils and composites (cermets). The main steps of the production of these supports have been refined, including unique technologies of blast dusting and hydrothermal treatment. The electric conductivity of these systems allows a quick startup of selective oxidation to be performed by passing electric current, and their thermal conductivity minimizes the temperature gradient arising from heat transfer in the bed. Procedures for loading monolith supports with active components have been developed, including impregnation, washcoating, or encapsulation in cermet matrices. The catalysts produced show a high efficiency and an operational stability adequate to the above tasks in the selective oxidation and steam-air autothermal reforming of natural gas (including processes under pressure), isooctane, and gasoline into synthesis gas.__________Translated from Kinetika i Kataliz, Vol. 46, No. 2, 2005, pp. 243–268.Original Russian Text Copyright © 2005 by Sadykov, Pavlova, Bunina, Alikina, Tikhov, Kuznetsova, Frolova, Lukashevich, Snegurenko, Sazonova, Kazantseva, Dyatlova, Usoltsev, Zolotarskii, Bobrova, Kuzmin, Gogin, Vostrikov, Potapova, Muzykantov, Paukshtis, Burgina, Rogov, Sobyanin, Parmon.  相似文献   
2.
The phase composition of La1 – x Ca x FeO3 – 0.5x perovskites synthesized from preactivated oxides was studied by powder X-ray diffraction analysis and differential dissolution. The system does not form a continuous series of homogeneous solid solutions. No intermediate samples from this series are monophasic. It was found that the synthesis under nonequilibrium conditions (mechanical activation + calcination at 900° for 4 h) resulted in nonequilibrium microheterogeneous solid solutions with degrees of calcium substitution for lanthanum of no higher than 0.5. A longer calcination (for 16 h) or an increase in the calcination temperature of solutions up to 1100 ° decreased the calcium content of the samples down to x 0.2 because of the formation of a brownmillerite phase. The catalytic activity of the test samples in the oxidation of CO changed nonmonotonically with x, and it was maximum at x = 0.5–0.6, which correlates with the maximum density of interphase boundaries in these samples.  相似文献   
3.
The activity of Ni, Pt, and LaNiO3 supported on -Al2O3 is studied in the selective catalytic oxidation of methane to syngas at 900°C and a contact time of 0.002 s using dilute mixtures (1000 ppm CH4 + 500 ppm O2 in He). The grain size was 100 m. The method of X-ray phase analysis shows that supported LaNiO3, both pure and containing Pt, has a perovskite hexagonal structure with altered lattice parameters. Using temperature-programmed reduction by hydrogen, it was found that the reduction of supported LaNiO3 is simplified in the presence of Pt and/or Ce0.2Zr0.8O2. The activity and selectivity of the catalysts in the reaction of selective catalytic oxidation of methane depends on their composition and oxidative-reductive treatment. It was found that, in the presence of catalysts based on LaNiO3 and containing Pt and/or Ce0.2Zr0.8O2, the reaction occurs with an induction period. It was assumed that the value of the induction period depends both on the dynamics of phase LaNiO3 reduction to Ni, which is associated with the accumulation of carbonate complexes and surface hydroxylation, and on slow changes in the defect structure of Ce0.2Zr0.8O2, which are associated with oxidation-reduction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号