首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   4篇
化学   24篇
晶体学   1篇
数学   4篇
物理学   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  1974年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
The title salt, methyl (1R,2R,3S,5S,8S)‐3‐benzoyl­oxy‐8‐methyl‐8‐aza­bicyclo­[3.2.1]octane‐2‐carboxyl­ate tetra­chloro­aurate(III), (C17H22NO4)[AuCl4], has its protonated N atom intra­molecularly hydrogen bonded to the O atom of the methoxy­carbonyl group [N⋯O = 2.755 (6) Å and N—H⋯O = 136°]. Two close inter­molecular C—H⋯O contacts exist, as well as five C—H⋯Cl close contacts. The [AuCl4] anion was found to be distorted square planar.  相似文献   
2.
Amorphous and crystalline states of As2Se3, (As2Se3)3 : Tl2Se and As2Se3 : Tl2Se have been studied using X-ray diffraction techniques. Structural changes arise during the process of annealing in the temperature range between their softening and melting points are reported and their rates investigated. The crystallization temperatures were found to be 105 ± 5 °C, 135 ± 5 °C and 180 ± 5 °C respectively. The unit cell parameters are identified for each of the three resulting crystalline phases, that for As2Se3 : Tl2Se being orthorhombic while the other two are monoclinic.  相似文献   
3.
Oxidation of [Li(DME)(3)][U(CH(2)SiMe(3))(5)] with 0.5 equiv of I(2), followed by immediate addition of LiCH(2)SiMe(3), affords the high-valent homoleptic U(V) alkyl complex [Li(THF)(4)][U(CH(2)SiMe(3))(6)] (1) in 82% yield. In the solid-state, 1 adopts an octahedral geometry as shown by X-ray crystallographic analysis. Addition of 2 equiv of tert-butanol to [Li(DME)(3)][U(CH(2)SiMe(3))(5)] generates the heteroleptic U(IV) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(3)] (2) in high yield. Treatment of 2 with AgOTf fails to produce a U(V) derivative, but instead affords the U(IV) complex (Me(3)SiCH(2))Ag(μ-CH(2)SiMe(3))U(CH(2)SiMe(3))(O(t)Bu)(2)(DME) (3) in 64% yield. Complex 3 has been characterized by X-ray crystallography and is marked by a uranium-silver bond. In contrast, oxidation of 2 can be achieved via reaction with 0.5 equiv of Me(3)NO, producing the heteroleptic U(V) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(4)] (4) in moderate yield. We have also attempted the one-electron oxidation of complex 1. Thus, oxidation of 1 with U(O(t)Bu)(6) results in formation of a rare U(VI) alkyl complex, U(CH(2)SiMe(3))(6) (6), which is only stable below -25 °C. Additionally, the electronic properties of 1-4 have been assessed by SQUID magnetometry, while a DFT analysis of complexes 1 and 6 is also provided.  相似文献   
4.
After more than 50 years, the synthesis and electronic structure of the first and only reported “U0 complex” [U(bipy)4] ( 1 ) has been reinvestigated. Additionally, its one‐electron reduced product [Na(THF)6][U(bipy)4] ( 2 ) has been newly discovered. High resolution crystallographic analyses combined with magnetic and computational data show that 1 and its derivative 2 are best described as highly reduced species containing mid‐to‐high‐valent uranium ligated by redox non‐innocent ligands.  相似文献   
5.
Membrane introduction mass spectrometry (MIMS) provides direct measurement of volatile and semivolatile analytes in condensed and gas-phase samples without sample preparation steps. Although MIMS has numerous advantages that include direct, on-line, real-time analysis with low detection limits, current applications of MIMS are predominantly limited to volatile and semivolatile analytes that permeate hydrophobic membranes (e.g., polydimethylsiloxane; PDMS). We report the first enzyme modified PDMS membrane for use with MIMS. This was achieved by immobilizing Candida rugosa lipase directly onto the surface of oxidized PDMS. These surface immobilized enzymes catalyze ester hydrolysis, releasing an alcohol product at the membrane interface that is readily detected. We have successfully used an enzyme modified membrane for the analysis and quantification of low-volatility and hydrophilic esters. We report the quantification of several carboxylic acid esters in dilute aqueous solutions, including a phthalate monoester carboxylate that is not readily detected by conventional MIMS. This new interface demonstrates the potential for extending the range and versatility of MIMS.  相似文献   
6.
7.
A large number of NP-hard graph problems are solvable in XP time when parameterized by some width parameter. Hence, when solving problems on special graph classes, it is helpful to know if the graph class under consideration has bounded width. In this paper we consider maximum-induced matching width (mim-width), a particularly general width parameter that has a number of algorithmic applications whenever a decomposition is “quickly computable” for the graph class under consideration. We start by extending the toolkit for proving (un)boundedness of mim-width of graph classes. By combining our new techniques with known ones we then initiate a systematic study into bounding mim-width from the perspective of hereditary graph classes, and make a comparison with clique-width, a more restrictive width parameter that has been well studied. We prove that for a given graph H, the class of H-free graphs has bounded mim-width if and only if it has bounded clique-width. We show that the same is not true for ( H 1 , H 2 ) -free graphs. We identify several general classes of ( H 1 , H 2 ) -free graphs having unbounded clique-width, but bounded mim-width; moreover, we show that a branch decomposition of constant mim-width can be found in polynomial time for these classes. Hence, these results have algorithmic implications: when the input is restricted to such a class of ( H 1 , H 2 ) -free graphs, many problems become polynomial-time solvable, including classical problems, such as k- Colouring and Independent Set , domination-type problems known as Locally Checkable Vertex Subset and Vertex Partitioning (LC-VSVP) problems, and distance versions of LC-VSVP problems, to name just a few. We also prove a number of new results showing that, for certain H 1 and H 2 , the class of ( H 1 , H 2 ) -free graphs has unbounded mim-width. Boundedness of clique-width implies boundedness of mim-width. By combining our results with the known bounded cases for clique-width, we present summary theorems of the current state of the art for the boundedness of mim-width for ( H 1 , H 2 ) -free graphs. In particular, we classify the mim-width of ( H 1 , H 2 ) -free graphs for all pairs ( H 1 , H 2 ) with V ( H 1 ) + V ( H 2 ) 8. When H 1 and H 2 are connected graphs, we classify all pairs ( H 1 , H 2 ) except for one remaining infinite family and a few isolated cases.  相似文献   
8.
A standard matrix representation of a matroid M represents M relative to a fixed basis B, where contracting elements of B and deleting elements of E(M)–B correspond to removing rows and columns of the matrix, while retaining standard form. If M is 3-connected and N is a 3-connected minor of M, it is often desirable to perform such a removal while maintaining both 3-connectivity and the presence of an N-minor. We prove that, subject to a mild essential restriction, when M has no 4-element fans with a specific labelling relative to B, there are at least two distinct elements, s 1 and s 2, such that for each i ∈ {1, 2}, si(M/s i ) is 3-connected and has an N-minor when s i B, and co(M\s i ) is 3-connected and has an N-minor when s i E(M)–B. We also show that if M has precisely two such elements and P is the set of elements that, when removed in the appropriate way, retain the N-minor, then (P, E(M)–P) is a sequential 3-separation.  相似文献   
9.
Addition of the Wittig reagent Ph(3)P═CH(2) to the U(III) tris(amide) U(NR(2))(3) (R = SiMe(3)) generates a mixture of products from which the U(IV) complex U═CHPPh(3)(NR(2))(3) (2) can be obtained. Complex 2 features a short U═C bond and represents a rare example of a uranium carbene. In solution, 2 exists in equilibrium with the U(IV) metallacycle U(CH(2)SiMe(2)NR)(NR(2))(2) and free Ph(3)P═CH(2). Measurement of this equilibrium as a function of temperature provides ΔH(rxn) = 11 kcal/mol and ΔS(rxn) = 31 eu. Additionally, the electronic structure of the U═C bond was investigated using DFT analysis.  相似文献   
10.
Addition of [UI2(THF)3(μ-OMe)]2·THF (2·THF) to THF solutions containing 6 equiv. of K[C14H10] generates the heteroleptic dimeric complexes [K(18-crown-6)(THF)2]2[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2·4THF (118C6·4THF) and {[K(THF)3][U(η6-C14H10)(η4-C14H10)(μ-OMe)]}2 (1THF) upon crystallization of the products in THF in the presence or absence of 18-crown-6, respectively. Both 118C6·4THF and 1THF are thermally stable in the solid-state at room temperature; however, after crystallization, they become insoluble in THF or DME solutions and instead gradually decompose upon standing. X-ray diffraction analysis reveals 118C6·4THF and 1THF to be structurally similar, possessing uranium centres sandwiched between bent anthracenide ligands of mixed tetrahapto and hexahapto ligation modes. Yet, the two complexes are distinguished by the close contact potassium-arenide ion pairing that is seen in 1THF but absent in 118C6·4THF, which is observed to have a significant effect on the electronic characteristics of the two complexes. Structural analysis, SQUID magnetometry data, XANES spectral characterization, and computational analyses are generally consistent with U(iv) formal assignments for the metal centres in both 118C6·4THF and 1THF, though noticeable differences are detected between the two species. For instance, the effective magnetic moment of 1THF (3.74 μB) is significantly lower than that of 118C6·4THF (4.40 μB) at 300 K. Furthermore, the XANES data shows the U LIII-edge absorption energy for 1THF to be 0.9 eV higher than that of 118C6·4THF, suggestive of more oxidized metal centres in the former. Of note, CASSCF calculations on the model complex {[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2}2− (1*) shows highly polarized uranium–arenide interactions defined by π-type bonds where the metal contributions are primarily comprised by the 6d-orbitals (7.3 ± 0.6%) with minor participation from the 5f-orbitals (1.5 ± 0.5%). These unique complexes provide new insights into actinide–arenide bonding interactions and show the sensitivity of the electronic structures of the uranium atoms to coordination sphere effects.

Use of Chatt metal-arene protocols with uranium leads to the synthesis of the first well-characterized, unsupported actinide–arenide sandwich complexes. The electronic structures of the actinide centres show a key sensitivity to ion pairing effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号