首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
化学   9篇
  2021年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2011年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Polysaccharide nanoparticles are promising materials in the wide range of disciplines such as medicine, nutrition, food production, agriculture, material science and others. They excel not only in their non‐toxicity and biodegradability but also in their easy preparation. As well as inorganic particles, a protein corona (PC) around polysaccharide nanoparticles is formed in biofluids. Moreover, it has been considered that the overall response of the organism to nanoparticles presence depends on the PC. This review summarises scientific publications about the structural chemistry of polysaccharide nanoparticles and their impact on theranostic applications. Three strategies of implementation of the PC in theranostics have been discussed: I) Utilisation of the PC in therapy; II) How the composition of the PC is analysed for specific disease markers; III) How the formed PC can interact with the immune system and enhances the immunomodulation or immunoelimination. Thus, the findings from this review can contribute to improve the design of drug delivery systems. However, it is still necessary to elucidate the mechanisms of nano‐bio interactions and discover new connections in nanoscale research.  相似文献   
2.
Nanofluidics is becoming an extensively developing technique in the field of bioanalytical chemistry. Nanoscale hole embed in an insulating membrane is employed in a vast variety of sensing platforms and applications. Although, biological nanopores have several attractive characteristics, in this paper, we focused on the solid‐state nanopores due to their advantages as high stability, possibility of diameter control, and ease of surface functionalizing. A detection method, based on the translocation of analyzed molecules through nanochannels under applied voltage bias and resistive pulse sensing, is well established. Nevertheless, it seems that the new detection methods like measuring of transverse electron tunneling using nanogap electrodes or optical detection can offer significant additional advantages. The aim of this review is not to cite all related articles, but highlight the steps, which in our opinion, meant important progresses in solid‐state nanopore analysis.  相似文献   
3.
Phenols are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potential antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. The objective of this study was to investigate a suitable method for determination of protocatechuic acid, 4-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferulic acid, quercetin, resveratrol and quercitrin from apricot samples. A high-performance liquid chromatograph with electrochemical and UV detectors was used. The method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The lowest limits of detection (3 S/N) using UV detection were estimated for ferulic acid (3 μM), quercitrin (4 μM) and quercetin (4 μM). Using electrochemical detection values of 27 nM, 40 nM and 37 nM were achieved for ferulic acid, quercitrin and quercetin, respectively. It follows from the acquired results that the coulometric detection under a universal potential of 600 mV is more suitable and sensitive for polyphenols determination than UV detection at a universal wavelength of 260 nm. Subsequently, we tested the influence of solvent composition, vortexing and sonication on separation efficiency. Our results showed that a combination of water, acetone and methanol in 20:20:60 ratio was the most effective for p-aminobenzoic acid, chlorgenic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, resveratrol and quercetin, in comparison with other solvents. On the other hand, vortexing at 4 °C produced the highest yield. Moreover, we tested the contents of individual polyphenols in the apricot cultivars Mamaria, Mold and LE-1075. The major phenolic compounds were chlorgenic acid and rutin. Chlorgenic acid was found in amounts of 2,302 mg/100 g in cultivar LE-1075, 546 mg/100 g in cultivar Mamaria and 129 mg/100 g in cultivar Mold. Generally, the cultivar LE-1075 produced the highest polyphenol content values, contrary to Mold, which compared to cultivar LE-1075 was quite poor from the point of view of the phenolics content.  相似文献   
4.
Zitka  Ondrej  Skalickova  Sylvie  Krizkova  Sona  Vlkova  Marcela  Adam  Vojtech  Kizek  Rene 《Chromatographia》2013,76(11):611-619

In this study, we optimized method for the isolation and detection of lactoferrin from human saliva using 3 mm short monolithic disc. We optimized the conditions for separation as flow rate 4 mL min−1 and ionic strength of effluent as 2 M·NaCl. We estimated limit of detection of whole method, which was hyphenated to the Bradford’s assay, down to 100 ng mL−1. The purity of the isolated fractions was verified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and recovery of isolation was found to be 51 % using minimally processed sample of saliva. Further, we tested the optimized method on group of healthy volunteers (n = 7). We were able to distinguish between the healthy subjects and subject suffering from celiac disease, which reported at least 2.5× higher level of lactoferrin in comparison to healthy ones. The results were correlated with standard enzyme-linked immunosorbent assay (ELISA) kit with obtained correlation coefficient R 2 = 0.8446. Analysis of lactoferrin in saliva by monolithic disc and subsequent offline photometric detection is faster and cheaper method compared to ELISA commercial kit. The total analysis of one sample takes <20 min.

  相似文献   
5.
Quantum dots (QDs) belong to a new class of fluorescent agent for biochemical, medicinal or other purposes. However, QDs based on cadmium or other metals can be risky for an organism. As one of the mechanism how to detoxify cadmium-based QDs expression of metallothioneins (MT) can be considered. Due to high affinity of metallothionein to cadmium(II) ions, we attempted to develop an approach for studying of possible interaction with QDs. We prepared QDs with CdTe core and studied the interaction with MT, which we isolated from livers of Cd-administered rabbits. To study the interaction, we used the mixture of both components MT (3.6 μM): CdTe QDs (0, 0.34, 0.68, 1.02, 1.36, 1.7, 2.04 and 2.47 μM). The mixtures were studied by spectrophotometry within the range from 200 to 750 nm with detected maxima at 260 and 505 nm. Same mixtures were also analysed by differential pulse voltammetry Brdicka reaction, which supported data from spectrophotometry. Subsequently, we used fast protein liquid chromatography for purification of protein–quantum dot conjugates. We obtained the different chromatograms for (1) Apo MT, (2) CdTe QDs and (3) MT–QD complex. We also collected the fractions and subsequently analysed them on the content of Cd and MT, which confirmed the formation of CdTe QDs–MT complex.  相似文献   
6.
The aim of this study was to analyze the interactions of blue and yellow fluorescent CdS quantum dots (CdS-QDs) with human papillomavirus 16 (HPV-16) oncogene E6. The interactions were investigated using chip capillary electrophoresis, spectrophotometry and square wave voltammetry (SWV). Using chip capillary electrophoresis we proved that blue fluorescent CdS-QDs (0.5 mM) caused an increase of the migration time of the E6 HPV-16 DNA–CdS-QDs complex by 42 s compared to control DNA (E6 HPV-16). The same concentration of yellow fluorescent CdS-QDs caused an increase in the migration time of the DNA–CdS-QDs complex by 108 s compared to the control DNA (E6 HPV-16). The difference in the migration times between both complexes was 66 s. Using square wave voltammetry (SWV), the reduction signal of cytosine and adenine (peak CA) was observed, after the complex with 2.5 µg mL?1 DNA was formed. A decrease of the peak CA reduction signal of the complex DNA–CdS-QDs by 90 % was caused when yellow fluorescent CdS-QDs (0.03 mM) were used. The same concentration of blue fluorescent CdS-QDs caused only a 50 % decrease of the C and A reduction signal of the DNA–CdS-QDs complex. The difference between both CdS-QDs was 40 %. Electrochemical measurements and chip electrophoresis analyses confirmed that the yellow fluorescent CdS-QDs show higher affinity to the DNA (E6 HPV-16) compared to blue ones.  相似文献   
7.

The aim of this study was to analyze the interactions of blue and yellow fluorescent CdS quantum dots (CdS-QDs) with human papillomavirus 16 (HPV-16) oncogene E6. The interactions were investigated using chip capillary electrophoresis, spectrophotometry and square wave voltammetry (SWV). Using chip capillary electrophoresis we proved that blue fluorescent CdS-QDs (0.5 mM) caused an increase of the migration time of the E6 HPV-16 DNA–CdS-QDs complex by 42 s compared to control DNA (E6 HPV-16). The same concentration of yellow fluorescent CdS-QDs caused an increase in the migration time of the DNA–CdS-QDs complex by 108 s compared to the control DNA (E6 HPV-16). The difference in the migration times between both complexes was 66 s. Using square wave voltammetry (SWV), the reduction signal of cytosine and adenine (peak CA) was observed, after the complex with 2.5 µg mL−1 DNA was formed. A decrease of the peak CA reduction signal of the complex DNA–CdS-QDs by 90 % was caused when yellow fluorescent CdS-QDs (0.03 mM) were used. The same concentration of blue fluorescent CdS-QDs caused only a 50 % decrease of the C and A reduction signal of the DNA–CdS-QDs complex. The difference between both CdS-QDs was 40 %. Electrochemical measurements and chip electrophoresis analyses confirmed that the yellow fluorescent CdS-QDs show higher affinity to the DNA (E6 HPV-16) compared to blue ones.

  相似文献   
8.
In this study, we optimized method for the isolation and detection of lactoferrin from human saliva using 3 mm short monolithic disc. We optimized the conditions for separation as flow rate 4 mL min?1 and ionic strength of effluent as 2 M·NaCl. We estimated limit of detection of whole method, which was hyphenated to the Bradford’s assay, down to 100 ng mL?1. The purity of the isolated fractions was verified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and recovery of isolation was found to be 51 % using minimally processed sample of saliva. Further, we tested the optimized method on group of healthy volunteers (n = 7). We were able to distinguish between the healthy subjects and subject suffering from celiac disease, which reported at least 2.5× higher level of lactoferrin in comparison to healthy ones. The results were correlated with standard enzyme-linked immunosorbent assay (ELISA) kit with obtained correlation coefficient R 2 = 0.8446. Analysis of lactoferrin in saliva by monolithic disc and subsequent offline photometric detection is faster and cheaper method compared to ELISA commercial kit. The total analysis of one sample takes <20 min.  相似文献   
9.
Sarcosine has been identified as a potential prostate cancer marker. To provide determination of this compound, a number of methods are developing. In this study, we optimized a method for its separation by hydrophilic interaction LC with electrochemical detection (ED). Due to the fact that mobile phases commonly used for this type of separation altered the LODs measured by electrochemical detectors, we applied postcolumn dosing of buffer suitable for ED. The optimized conditions were mobile phase A acetonitrile, mobile phase B water in the ratio A/B 70:30, with postcolumn addition of mobile phase C (200 mM phosphate buffer pH 9). The optimal mixing ratio was A + B/C 1:1 with a flow rate of 0.80 mL/min (0.40 + 0.40 mL/min) and detection potential of 1000 mV. Due to the optimization of the parameters for effective separation, which had to meet the optimal parameters of ED, we reached a good resolution for separation also with a good LOD (100 nM). In addition, we successfully carried out sarcosine analysis bound on our modified paramagnetic microparticles with the ability to preconcentrate sarcosine isolated from artificial urine.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号