首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
化学   5篇
  2023年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The reversibly formed C?N bond plays a very important role in dynamic covalent chemistry and the C?N/C?N exchange of components between different imine constituents to create dynamic covalent libraries has been extensively used. To facilitate diversity generation, we have investigated an organocatalyzed approach, using L ‐proline as catalyst, to accelerate the formation of dynamic libraries of [n×n] imine components. The organocatalysis methodology has also been extended, under somewhat modified conditions, to reversible C?C/C?N exchange processes between Knoevenagel derivatives of barbituric acid and imines, allowing for the generation of increased diversity.  相似文献   
2.
A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.  相似文献   
3.
Molecular diversity generation through reversible component exchange has acquired great importance in the last decade with the development of dynamic covalent chemistry. We explore here the recombination of components linked by C?C and C?N bonds through reversible double‐bond formation, and cleavage in C?C/C?C and C?C/C?N exchange processes. The reversibility of the Knoevenagel reaction has been explored, and C?C/C?C C/C exchanges have been achieved among different benzylidenes, under organocatalysis by secondary amines such as L ‐proline. The substituents of these benzylidenes were shown to play a very important role in the kinetics of the exchange reactions. L ‐Proline is also used to catalyze the reversible C?C/C?C exchange between Knoevenagel derivatives of barbituric acid and malononitrile. Finally, the interconversion between Knoevenagel derivatives of dimethylbarbituric acid and imines (C?C/C?N exchange) has been studied and was found to occur rapidly in the absence of catalyst. The results of this study pave the way for the extension of dynamic combinatorial chemistry based on C?C/C?C and C?C/C?N exchange systems.  相似文献   
4.
5.
Dynamic covalent libraries (DCLs) of quaternary ammonium cations were set up by reversible nucleophilic substitution (SN2′ and SN2) exchange reactions of ammonium salts and tertiary amines. The reactions were conducted at 60 °C to generate thermodynamically and kinetically controlled mixtures of quaternary ammonium compounds and tertiary amines, and were accelerated by using iodide as a nucleophilic catalyst. Microwave irradiation was used to assist the exchange reaction between the pyridinium salts and pyridine derivatives. Finally, experiments towards the generation of dynamic ionic liquids were performed. The results of this study pave the way for the extension of dynamic combinatorial chemistry to nucleophilic substitution reactions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号