首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2021年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

Escherichia coli phytase (AppA) has been widely used as an exogenous feed enzyme for monogastric animals; however, the production of this enzyme has been examined primarily in E. coli and yeast expression systems. As an alternative to production of soluble phytase, an enzyme immobilization method using the Bacillus subtilis spore outer-coat protein CotG as an anchoring motif for the display of the AppA was attempted. Using this motif, AppA was successfully produced on the spore surface of B. subtilis as verified by Western blot analysis and phytase activity measurements. Analysis of the pH stability indicated that more than 50% activity was retained after incubation at four different pH values (2.0, 4.0, 7.0, and 8.0) for up to 12 h, with maximum activity observed at pH 4.5. The highest enzyme activity seen at 55 °C and thermal stability measurements demonstrated that more than 30% activity remained after 30 min incubation at 60 °C. The spore surface-displayed AppA was resistant to pepsin, and more stable than phytase produced previously using a yeast expression system. Furthermore, we present data indicating that the use of peptide linkers may help improve the bioactivity of displayed enzymes on the spore surface of B. subtilis.

  相似文献   
2.
Background: Panduratin A is a bioactive cyclohexanyl chalcone exhibiting several pharmacological activities, such as anti-inflammatory, anti-oxidative, and anti-cancer activities. Recently, the nephroprotective effect of panduratin A in cisplatin (CDDP) treatment was revealed. The present study examined the potential of certain compounds derived from panduratin A to protect against CDDP-induced nephrotoxicity. Methods: Three derivatives of panduratin A (DD-217, DD-218, and DD-219) were semi-synthesized from panduratin A. We investigated the effects and corresponding mechanisms of the derivatives of panduratin A for preventing nephrotoxicity of CDDP in both immortalized human renal proximal tubular cells (RPTEC/TERT1 cells) and mice. Results: Treating the cell with 10 µM panduratin A significantly reduced the viability of RPTEC/TERT1 cells compared to control (panduratin A: 72% ± 4.85%). Interestingly, DD-217, DD-218, and DD-219 at the same concentration did not significantly affect cell viability (92% ± 8.44%, 90% ± 7.50%, and 87 ± 5.2%, respectively). Among those derivatives, DD-218 exhibited the most protective effect against CDDP-induced renal proximal tubular cell apoptosis (control: 57% ± 1.23%; DD-218: 19% ± 10.14%; DD-219: 33% ± 14.06%). The cytoprotective effect of DD-218 was mediated via decreases in CDDP-induced mitochondria dysfunction, intracellular reactive oxygen species (ROS) generation, activation of ERK1/2, and cleaved-caspase 3 and 7. In addition, DD-218 attenuated CDDP-induced nephrotoxicity by a decrease in renal injury and improved in renal dysfunction in C57BL/6 mice. Importantly, DD-218 did not attenuate the anti-cancer efficacy of CDDP in non-small-cell lung cancer cells or colon cancer cells. Conclusions: This finding suggests that DD-218, a derivative of panduratin A, holds promise as an adjuvant therapy in patients receiving CDDP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号