首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
化学   10篇
力学   1篇
数学   7篇
物理学   12篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
为获得10 km/s左右的超高速发射能力,以内爆发射器为研究对象,利用AUTODYN 2D软件对口径为8 mm的内爆发射器进行有限元仿真分析,获得了典型状态下的弹丸发射速度。研制了口径为8 mm的内爆发射器,并在压缩管中填充5 MPa氦气进行实验,分别获得了0.55 g铝合金弹丸7.95 km/s和0.37 g镁合金弹丸10.28 km/s的发射速度,与有限元仿真计算结果的速度偏差分别为15.3%和3.7%。结果表明,设计的内爆发射器具备10 km/s发射能力,满足空间碎片撞击和防护研究的超高速发射需求。  相似文献   
2.
In the present study, an electroanalytical method that permits the optimization of factors affecting SWV for sensitive detection of mifepristone at glassy carbon electrode (GCE) using response surface methodology (RSM) with desirability function (DF) is presented. Factors selected for optimization after screening using full factorial design were frequency (X1), amplitude (X2), and pH (X3). The central composite design as a response surface methodology with desirability function (DF) was applied for obtaining the optimum level. The optimum conditions were obtained as follows: Frequency (X1=50 Hz), amplitude (X2=33.4 mV), and pH (X3=9.4), with an overall desirability function of 0.97. Subsequently, confirmatory experiments were performed in triplicates to validate the optimum conditions. The results obtained were satisfactory and agreed well with less only 11.9 % deviation from the values predicted by the model. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.54 and 1.80 ppm, respectively. The proposed method was applied for a quantitative determination of mifepristone in spiked tap water samples. The recovery tests showed that the detection of mifepristone at GC could be evaluated on environmental samples.  相似文献   
3.
We report the effects of heat treatment on Zn x Ni1???x Fe2O4 (x?= 0, 0.5 and 1.0) and MnFe2O4 ferrite nanoparticles. The as-prepared compounds were sintered from 400°C to 1100°C. Pure ZnFe2O4 (x?= 1.0) and MnFe2O4 could be obtained under low reaction temperature of 200°C. NiFe2O4 (x?= 0) and Zn0.5Ni0.5Fe2O4 (x?= 0.5) nanoferrites crystallized with single phase cubic spinel structure after annealing at 600°C. The single phase cubic spinel structure of these compounds was destroyed after annealing at temperature above 700°C. The magnetization measurements indicate superparamagnetic behavior of the nanosized compounds produced.  相似文献   
4.
The Einstein–Maxwell equations with anisotropic pressures and electromagnetic field are studied with a polytropic equation of state. New exact solutions to the field equations are generated in terms of elementary functions. Special cases of the uncharged solutions of Feroze and Siddiqui (Gen Relativ Gravit 43:1025, 2011) and Maharaj and Mafa Takisa (Gen Relativ Gravit 44:1419, 2012) are recovered. We also obtain exact solutions for a neutral anisotropic gravitating body for a polytrope from our general treatment. Graphical plots indicate that the energy density, tangential pressure and anisotropy profiles are consistent with earlier treatments which suggest relevance in describing relativistic compact stars.  相似文献   
5.
The reaction-diffusion delay differential equation
ut(x,t)−uxx(x,t)=g(x,u(x,t),u(x,tτ))  相似文献   
6.
We report on the synthesis and characterization of activated carbon–ethylenediamine–cobalt(II) tetracarboxyphthalocyanine conjugate (AC–CONHCH2CH2NH2–CoPc) and its electrocatalytic behavior for oxidation of ascorbic acid. Ultraviolet–visible (UV–Vis), Fourier-transform infrared (FTIR), and electrochemical impedance spectroscopies, and cyclic and square-wave voltammetry were used to characterize the electrode modifiers and modified glassy carbon electrode. The limit of detection was found to be 0.26 µm using 3δ notation. The linear dynamic range was from 1.5 × 10?4 to 1 × 10?2 M with electrode sensitivity of 0.01 A mol?1 L cm?2. A Tafel slope of 200.8 mV decade?1 was found. The concentration of ascorbic acid in the tablet was 0.034 M. Oxalic acid showed no interference in ascorbic acid determination.  相似文献   
7.
Cu0.5Ni0.5Fe2O4 nanoparticles have been synthesized in ethylene glycol solution and in deionised water. The glycothermal reaction was carried at 200°C under gauge pressure of 100 psi. The hydrothermal treatment was done at 100°C under zero pressure. Complete single-phase cubic spinel structure in the samples made by glycothermal (sample G) and hydrothermal (sample H) processes formed after annealing at 600°C and 900°C respectively. The coercive field of sample H increases from 72 Oe to 133 Oe after sintering at 700°C and then decrease to 11 Oe on sintering at 1000°C. This variation is attributed to surface effects and crossover from single to multidomain behavior due to increasing particle size.  相似文献   
8.
Here we discuss a sequence of Lagrangians and corresponding Euler–Lagrange equations and point out some interesting properties that this particular sequence holds. This is an extension on recent results obtained on sequences of differential equations to Lagrangians as it leads to differential equations on the application of the Variational Principle.  相似文献   
9.
10.
Fumed silica (FS) and synthetic boehmite alumina (BA) nanofillers with and without surface treatments were incorporated in 5 wt. % in low density polyethylene (LDPE) through melt blending. FS was treated using hexadecyl silane, whereas BA using octyl silane and alkylbenzene sulfonic acid. The related nanocomposites were subjected to pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and thermogravimetric analysis (TGA) under isothermal and dynamic conditions, respectively. Py-GC-MS results proved that the thermal degradation mechanism did not change in the presence of the nanofillers. The latter suppressed the formation of high molecular weight hydrocarbons and affected the relative amounts of diene/alkene/alkane fragments for each hydrocarbon fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号