首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   22篇
  国内免费   1篇
化学   793篇
晶体学   1篇
力学   7篇
数学   65篇
物理学   67篇
  2024年   2篇
  2023年   9篇
  2022年   56篇
  2021年   46篇
  2020年   14篇
  2019年   24篇
  2018年   10篇
  2017年   11篇
  2016年   28篇
  2015年   30篇
  2014年   27篇
  2013年   76篇
  2012年   67篇
  2011年   57篇
  2010年   48篇
  2009年   37篇
  2008年   48篇
  2007年   52篇
  2006年   60篇
  2005年   54篇
  2004年   48篇
  2003年   25篇
  2002年   27篇
  2001年   10篇
  2000年   10篇
  1999年   6篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1969年   1篇
排序方式: 共有933条查询结果,搜索用时 15 毫秒
1.
The formation and characterization of some interpolyelectrolyte complex (IPEC) nanoparticles based on poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS), as a function of the polycation structure, polyanion molar mass, and polyion concentration, were followed in this work. Poly(diallyldimethylammonium chloride) and two polycations (PCs) containing (N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride) units in the backbone (PCA5 and PCA5D1) were used as starting polyions. The complex stoichiometry, (n?/n+)iso, was pointed out by optical density at 500 nm (OD500), polyelectrolyte titration, and dynamic light scattering. IPEC nanoparticle sizes were influenced by the polycation structure and polyanion molar mass only before the complex stoichiometry, which was higher for the more hydrophilic polycations (PCA5 and PCA5D1) and for a higher NaPAMPS molar mass, and were almost independent of these factors after that, at a flow rate of the added polyion of about 0.28 mL × (mL PC)?1 × h?1. The IPEC nanoparticle sizes remained almost constant for more than 2 weeks, both before and after the complex stoichiometry, at low concentrations of polyions. NIPECs as stable colloidal dispersions with positive charges in excess were prepared at a ratio between charges (n?/n+) of 0.7, and their storage colloidal stability, as a function of the polycation structure and polyion concentration (from 0.8 to ca. 7.8 mmol/L), was demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2495–2505, 2004  相似文献   
2.
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that might lead to very serious consequences. Notably, mental status change, brain confusion, and smell and taste disorders along with neurological complaints have been reported in patients infected with SARS-CoV-2. Furthermore, human brain tissue autopsies from COVID-19 patients show the presence of SARS-CoV-2 neuroinvasion, which correlates with the manifestation of meningitis, encephalitis, leukocyte infiltration, and neuronal damage. The olfactory mucosa has been suggested as a way of entry into the brain. SARS-CoV-2 infection is also known to provoke a hyper-inflammatory reaction with an exponential increase in the production of pro-inflammatory cytokines leading to systemic responses, even in the absence of direct infection of brain cells. Angiotensin-converting enzyme 2 (ACE2), the entry receptor of SARS-CoV-2, has been extensively demonstrated to be present in the periphery, neurons, and glial cells in different brain regions. To dissect the details of neurological complications and develop therapies helping COVID-19 survivors regain pre-infection quality of life, the development of robust clinical models is highly warranted. Several human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models have been developed and used for antiviral drug screening and vaccine development, as well as for better understanding of the molecular pathogenetic mechanisms of SARS-CoV-2 infection. In this review, we summarize recent results from the studies involving two such mouse models, namely K18- and CAG-hACE2 transgenics, to evaluate the direct and indirect impact of SARS-CoV-2 infection on the central nervous system.  相似文献   
3.
DPA‐713 is the lead compound of a recently reported pyrazolo[1,5‐a]pyrimidineacetamide series, targeting the translocator protein (TSPO 18 kDa), and as such, this structure, as well as closely related derivatives, have been already successfully used as positron emission tomography radioligands. On the basis of the pharmacological core of this ligands series, a new magnetic resonance imaging probe, coded DPA‐C6‐(Gd)DOTAMA was designed and successfully synthesized in six steps and 13% overall yield from DPA‐713. The Gd‐DOTA monoamide cage (DOTA = 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid) represents the magnetic resonance imaging reporter, which is spaced from the phenylpyrazolo[1,5‐a]pyrimidineacetamide moiety (DPA‐713 motif) by a six carbon‐atom chain. DPA‐C6‐(Gd)DOTAMA relaxometric characterization showed the typical behavior of a small‐sized molecule (relaxivity value: 6.02 mM?1 s?1 at 20 MHz). The good hydrophilicity of the metal chelate makes DPA‐C6‐(Gd)DOTAMA soluble in water, affecting thus its biodistribution with respect to the parent lipophilic DPA‐713 molecule. For this reason, it was deemed of interest to load the probe to a large carrier in order to increase its residence lifetime in blood. Whereas DPA‐C6‐(Gd)DOTAMA binds to serum albumin with a low affinity constant, it can be entrapped into liposomes (both in the membrane and in the inner aqueous cavity). The stability of the supramolecular adduct formed by the Gd‐complex and liposomes was assessed by a competition test with albumin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
We report on the fabrication and characterization of Si/SiO2 Fabry-Perot microcavities. These structures are used to enhance the external quantum efficiency along the cavity axis and the spectral purity of emission from silicon rich oxide films that are used as active media to fabricate a Si based RCLED (resonant cavity light emitting devices). A new structure to electrically pump the active media in the resonant cavity has been designed. These structures are fabricated by chemical vapour deposition on a silicon substrate. The microcavities are tuned at 850 nm and present a quality factor ranging from 17 to 150 depending on the number of pairs constituting the dielectric mirrors. An enhancement of the electro and photoluminescence (PL) signal of 20 times is achieved for the selected emission wavelength. These cavities are characterized by TEM analysis to evaluate film uniformity, thicknesses and the densification after annealing processes for temperature ranging from 800 to 1100 °C. The electrical properties of the active media are analyzed. The electroluminescence spectral features are compared with PL spectra correlated with the quality factor of the cavities. The photometric diagram shows also a high directionality of the emitted light within a 30° cone from the sample normal.  相似文献   
5.
Over the past 10 years, with the advent of new crystals designs and a new generation of pump lasers, continuous‐wave (cw) optical parametric oscillators (OPOs) have developed into mature monochromatic light sources. Nowadays, cw OPOs can fulfill a wide variety of criteria for sensitive molecular gas sensing. It can access the mid‐infrared wavelength region, where many molecules have their fundamental rotational‐vibrational transitions, with high power. This high power combined with wide wavelength tuning and narrow linewidth creates excellent conditions for sensitive, high‐resolution spectroscopy. OPOs combined with robust methods, such as photoacoustic spectroscopy and cavity‐enhanced spectroscopy, are well suited for field measurements and remote‐sensing applications. The wide tunability of cw OPOs allows detection of larger molecules with broad absorption band structures, and its fast scanning capabilities allow rapid detection of trace gases, the latter is a demand for life‐science applications. After a short introduction about the physical principle of cw OPOs, with its most recent physical developments, this review focuses on sensitive molecular gas sensing with a variety of spectroscopic applications in atmospheric and life sciences.  相似文献   
6.
Experimental studies on patterning hexagonal Ge nanostructures have been conducted on Si substrates through deposition of Ge with colloidal particles as a mask. The deposited Ge thin film possesses, according to the X-ray diffraction measurements, in plane texture, being epitaxial and aligned with the (111) Si substrate. The size distribution of the patterned Ge nanostructures is narrow, as indicated by the atomic force microscopy and scanning electron microscopy measurements. We have obtained Ge nanostructures with lateral dimension of 490 nm (height 12 nm), 200 nm (height 6 nm) and 82 nm (height 6 nm) by using different sizes of polystyrene spheres. We have performed in depth studies of the Ge nanostructures’ behavior due to thermal and rapid thermal post-annealing processes. FT micro-Raman spectroscopy shows that there is no Si intermixing during the annealing process. In order to quantify the changes in the height and lateral dimension, we have performed atomic force microscopy and white light interferometry analysis. The changes in shape and the decrease in the area of a cross-section of Ge nanostructure will be discussed in respect to similar results shown in the literature for Ge thin films during the annealing process.  相似文献   
7.
The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe3O4 magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100–200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.
Graphical abstract SEM images of EDTA-coated magnetic clusters (MCs) and the HUVEC viability at different MC doses
  相似文献   
8.
Conjugate acid–base forms of the drug metoclopramide were investigated by Raman spectroscopy in aqueous solutions and by surface‐enhanced Raman scattering (SERS), when the molecules were adsorbed on colloidal silver surfaces. Raman spectra were recorded at pH values below 8, metoclopramide being poorly water soluble at higher pH values. The SERS spectra of metoclopramide were recorded in the 3–11 pH range, even in spite of its low solubility at basic pH values. The Raman and SERS spectra were assigned by means of density functional theory (DFT) calculations. By monitoring several SERS marker bands, the protonated, neutral or the coexistence of both molecular species adsorbed on the colloidal silver particles could be evidenced. The adsorbate orientation was deduced to be perpendicular to the metal surface for the protonated molecular species and tilted for the neutral metoclopramide molecular species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
9.
Chiral racemic α-diimines, tested in aziridination reactions with NsONHCO2Et, for the first time led to the synthesis of (±)-bidiaziridines, stereoselectively derived from the corresponding meso (E-s-trans-E)-α-diimines. Moreover, a minor bidiaziridine isomer, probably a meso form that was lost under classical work-up conditions, can be obtained by adding water to the crude mixtures at the end of amination reactions. The results definitively prove that the imine aziridination by carbamates is a two-step domino process. The structures of the compounds were determined using 2D NMR on purified bidiaziridines.  相似文献   
10.
The ability of MALDI TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) to identify cultivable microflora from two waste disposal sites from non-ferrous metal industry was analysed. Despite the harsh conditions (extreme pH values and heavy metal content in red mud disposal site from aluminium production or high heavy metal content in nickel sludge), relatively high numbers of bacteria were recovered. In both environments, the bacterial community was dominated by Gram-positive bacteria, especially by actinobacteria. High-quality MALDI TOF mass spectra were obtained but most of the bacteria isolates could be not identified using MALDI Biotyper software. The overall identification rate was lower than 20 %; in two of the environments tested identification rates were lower than 10 %. As a dominant bacterial species, Microbacterium spp. in drainage water from an aluminium red mud disposal site near ?iar nad Hronom, Bacillus spp. in red mud samples from the same site, and Arthrobacter spp. from nickel smelter sludge near Sereï were identified by a combination of the Biolog system and 16S rRNA sequence analysis. As the primary focus of the MALDI TOF MS-based methodology is directed towards medically important bacteria, reference database spectra expansion and refinement are needed to improve the ability of MALDI TOF MS to identify environmental bacteria, especially those from extreme environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号