首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   18篇
  国内免费   22篇
化学   125篇
晶体学   4篇
力学   18篇
综合类   2篇
数学   12篇
物理学   26篇
  2023年   7篇
  2022年   12篇
  2021年   11篇
  2020年   11篇
  2019年   13篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   9篇
  2013年   6篇
  2012年   22篇
  2011年   17篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   4篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有187条查询结果,搜索用时 31 毫秒
1.
Bi2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidation of methanol. These powders were characterized by UV-Visible diffuse reflectance spectra, SEM and X-ray diffraction (XRD). The results revealed that all the Bi2O3/SrTiO3 composite powders exhibited higher photocatalytic activity than pure SrTiO3, Bi2O3 and TiO2 (P25) under visible light irradiation (λ>440 nm). The effects of the Bi2O3 contents on the photocatalytic activities of the composite powders were examined, the photocatalytic activities increased with the content of Bi2O3 increasing to a maximum of 83% and then decreased under visible light irradiation. The effects of the calcination temperatures on the photocatalytic activities of the composite powders were also investigated.  相似文献   
2.
Xiao  Xiong   Zhong  Yucheng  Cheng  Mingyang  Sheng  Lei  Wang  Dan  Li  Shuxin 《Cellulose (London, England)》2021,28(17):11209-11229

There are growing research interests in flax fibers due to their renewable ‘green’ origin and high strength. However, these natural fibers easily absorb moisture and have poor adhesion with polymer matrix leading to low interfacial strength for the composites. A hybrid chemical treatment technique combining alkali (sodium hydroxide) and silane treatments is adopted in the current study to modify flax fibers for improved performances of flax/polypropylene composites. Changes in chemical composition, microstructure, wettability, surface morphology, crystallinity and tensile properties of single flax fiber before and after chemical treatments were comprehensively characterized using techniques including SEM, FTIR, AFM, XRD, micro-fiber tester, etc. It was found that hemicellulose and lignin at the fiber surface were removed due to alkali treatment, which helped to reduce moisture absorption of the composites. Alkali-treated flax fibers were later subjected to silane treatment, which helped to improve the compatibility between flax fiber and polypropylene matrix. After alkali-silane hybrid chemical treatment, moisture absorption of the composites was further decreased. At the same time, the interfacial bonding strength between flax and polypropylene is significantly enhanced. All these results validate the great advantage of the hybrid chemical treatment approach for flax/polypropylene composites, which has the potential to promote the application of chemical treatment techniques in the plant fiber composite industry.

Graphic abstract
  相似文献   
3.
Novel carboxylated oligothiophenes with different thiophene units were designed and synthesized as photosensitizers in dye-sensitized solar cells (DSSCs) for efficient opto-electric materials. The introduction of -COOH into thiophene molecules can lead to a red shift of UV-visible absorption, increase light-harvesting efficiency, and enhance photoinduced charge transport by forming efficient covalent bonds to the substrate surface. A red shift of the absorption spectrum of oligothiophene is also achieved by the increase in the number of thiophene units. The DSSCs based on the oligomers have excellent photovoltaic performances. Under 100 mW cm(-2) irradiation a short-circuit current of 10.57 mA cm(-2) and an overall energy conversion efficiency of 3.36 % is achieved when pentathiophene dicarboxylated acid was used as a sensitizer. The incident photo-to-current conversion efficiency (IPCE) has a maximum as high as 80 %. In addition, photovoltage and photocurrent transients show that slow charge recombination in DSSCs is important for efficient charge separation and excellent photoelectric conversion properties of the oligomers. These initial and promising results suggest that carboxylated oligothiophenes are efficient photosensitizers.  相似文献   
4.
In this paper, the authors use Glimm scheme to study the global existence of BV solutions to Cauchy problem of the pressure-gradient system with large initial data. To this end, some important properties of the shock curves of the pressure-gradient system in the Riemann invariant coordinate system and verify that the shock curves satisfy Diperna’s conditions (see [Diperna, R. J., Existence in the large for quasilinear hyperbolic conservation laws, Arch. Ration. Mech. Anal., 52(3), 1973, 244–257]) are studied. Then they construct the approximate solution sequence through Glimm scheme. By establishing accurate local interaction estimates, they prove the boundedness of the approximate solution sequence and its total variation.  相似文献   
5.
神经网络法用于多元混酸同时测定   总被引:1,自引:0,他引:1  
利用多层神经网络误差反向传播算法处理酸碱电位滴定数据,求得出多元混合酸各组分的浓度,优化了神经网络的结构和参数,测定了三组分有机酸混合样品,结果良好,平均相对偏差RSD≤4%。  相似文献   
6.
With the rapid development of human society, clean energy forms are imperative to sustain the normal operations of various mechanical and electrical facilities under a cozy environment. Hydrogen is considered among the most promising clean energy sources for the future. Recently, electrochemical water splitting has been considered as one of the most efficient approaches to harvest hydrogen energy, which generates only non-pollutant water on combustion. However, the sluggish anodic oxygen evolution reaction significantly restricts the efficiency of water splitting and requires a relatively high cell voltage to drive the electrolysis. Therefore, seeking a thermodynamically favorable anodic reaction to replace the sluggish oxygen evolution reaction by utilizing highly active bifunctional electrocatalysts for the anodic reaction and hydrogen evolution are crucial for achieving energy-efficient hydrogen production for industrial applications. Nevertheless, it is known that the oxygen evolution reaction can be replaced with other useful and thermodynamically favorable reactions to reduce the electrolysis voltage for realizing energy-efficient hydrogen production. Therefore, in this study, we present a bifunctional nickel nanoparticle-embedded carbon (Ni@C) prism-like microrod electrocatalyst synthesized via a two-step method involving the synthesis of a precursor metal-organic framework-74 and subsequent carbonization treatment for methanol oxidation and hydrogen evolution. The interfacial structure consisting of a nickel and carbon skeleton was realized via in situ carbonization. However, the dispersed nickel nanoparticles do not easily aggregate owing to the partition by the surrounding carbon as it would sufficiently expose the active Ni sites to the electrolytes, ensuring fast charge transfer between the catalyst and electrolytes by accelerating the electrochemical kinetics. In the anodic methanol oxidation, the products were detected as carbon dioxide and formate with faradaic efficiencies of 36.2% and 62.5%, respectively, at an applied potential of 1.55 V. Meanwhile, the Ni@C microrod catalyst demonstrated high activity and durability (2.7% current decay after 12 h of continuous operation) toward methanol oxidation, which demonstrates that methanol oxidation precedes oxidation under voltage forces. Notably, the bifunctional catalyst not only exhibits excellent performance toward methanol oxidation but also yields a low overpotential of 155 mV to drive 10 mA∙cm−2 toward hydrogen evolution in 1.0 mol∙L−1 KOH aqueous solution with 0.5 mol∙L−1 methanol at room temperature, which guarantees the hydrogen production efficiency. More importantly, the constructed two-electrode electrolyzer produced a current density of 10 mA∙cm−2 at a low cell voltage of 1.6 V, which decreased by 240 mV after replacing the oxygen evolution reaction with methanol oxidation.  相似文献   
7.
Journal of Thermal Analysis and Calorimetry - Ettringite is an important cement hydration product and has a significant effect on cement performance. H-ettringite (synthesized by hydration...  相似文献   
8.
Cui  Shuxin  Zhu  Baili  Zhang  Xiaoying  Xiang  Shuanglong  He  Pengzhen  Yin  Qianzhu  Zuo  Minghui  Xu  Bo 《Transition Metal Chemistry》2021,46(5):345-351
Transition Metal Chemistry - Two complexes [Fe(1,10-phen)2Ni(CN)4]n (1), {[Fe2(1,10-phen)4(CN)4Co2(1,10-phen)2Fe(CN)6]·2H2O}n (2) were prepared in the reaction of K3[Fe(CN)6] as cyanometalate...  相似文献   
9.
The high-dimensional (that is, three-dimensional (3D)) assembly of nanomaterials is an effective means of improving their properties; however, achieving this assembly at the atomic level remains challenging. Herein, we obtained a novel nanocluster, [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl (Dppp=1,3-bis(diphenylphosphino)propane) showing a 3D octameric assembly mode involving the kernel penetration of eight complete icosahedral Au@Ag10Au2 units for the first time. The atomically precise structure was determined by single-crystal X-ray diffraction, and further confirmed by thermogravimetric analysis, X-ray photoelectron spectroscopy, and electrospray ionization mass spectrometry measurements. Furthermore, ligand-induced transformation prompted the conversion of [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl, with complete octameric fusion into [Au8Ag55(Dppp)4(C6H11S)34][BPh4]2, with incomplete octameric fusion. These observations will hopefully facilitate further research on the assembly of M13 nanobuilding blocks.  相似文献   
10.
The high‐dimensional (that is, three‐dimensional (3D)) assembly of nanomaterials is an effective means of improving their properties; however, achieving this assembly at the atomic level remains challenging. Herein, we obtained a novel nanocluster, [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl (Dppp=1,3‐bis(diphenylphosphino)propane) showing a 3D octameric assembly mode involving the kernel penetration of eight complete icosahedral Au@Ag10Au2 units for the first time. The atomically precise structure was determined by single‐crystal X‐ray diffraction, and further confirmed by thermogravimetric analysis, X‐ray photoelectron spectroscopy, and electrospray ionization mass spectrometry measurements. Furthermore, ligand‐induced transformation prompted the conversion of [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl, with complete octameric fusion into [Au8Ag55(Dppp)4(C6H11S)34][BPh4]2, with incomplete octameric fusion. These observations will hopefully facilitate further research on the assembly of M13 nanobuilding blocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号