首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   1篇
化学   14篇
力学   3篇
数学   2篇
物理学   7篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Hypoxia is a common biological condition in many malignant solid tumors that plays an imperative role in regulating tumor growth and impacting the treatment’s therapeutic effect. Therefore, the hypoxia assessment is of great significance in predicting tumor development and evaluating its prognosis. Among the plenty of existing tumor diagnosis techniques, magnetic resonance imaging (MRI) offers certain distinctive features, such as being free of ionizing radiation and providing images with a high spatial resolution. In this study, we develop a fluorescent traceable and hypoxia-sensitive T1-weighted MRI probe (Fe3O4-Met-Cy5.5) via conjugating notable hypoxia-sensitive metronidazole moiety and Cy5.5 dye with ultrasmall iron oxide (Fe3O4) nanoparticles. The results of in vitro and in vivo experiments show that Fe3O4-Met-Cy5.5 has excellent performance in relaxivity, biocompatibility, and hypoxia specificity. More importantly, the obvious signal enhancement in hypoxic areas indicates that the probe has great feasibility for sensing tumor hypoxia via T1-weighted MRI. These promising results may unlock the potential of Fe3O4 nanoparticles as T1-weighted contrast agents for the development of clinical hypoxia probes.  相似文献   
2.
岩土工程下沉贯入数值模拟方法研究进展   总被引:4,自引:0,他引:4  
闫澍旺  霍知亮 《力学与实践》2016,38(3):237-249,236
岩土工程下沉贯入领域的数值分析,由于结构物贯入时网格变形过大而产生扭曲畸变等问题,常会造成收敛困难甚至计算结果失真. 采用合适的数值方法分析此类问题颇具挑战性. 本文系统介绍了近年来对于岩土下沉贯入数值模拟的研究现状和发展动态,对各种数值模拟方法的相关原理、主要特征以及优缺点进行简要的探讨. 并简要介绍耦合的欧拉-拉格朗日(coupled Eulerian-Lagrangian, CEL) 有限元法的基本原理,通过不排水条件下的条形基础贯入问题和砂土中桩的静压下沉示例分析,表明CEL 有限元法在模拟岩土贯入问题时计算结果的准确性和较其他模拟方法的优势. 文中所阐述的岩土贯入分析数值模拟方法可供从事岩土贯入分析的相关学者借鉴参考.  相似文献   
3.
A novel Bi2O4@TiO2 heterojunction was constructed by a simple two-step method. The charges migration between Bi2O4 and TiO2 via the heterojunction improves the electron/hole separation efficiency. Furthermore, Bi2O4@TiO2 heterostructures exhibit better adsorption capability for methyl orange molecular due to their higher specific surface area than pure Bi2O4. As a result, Bi2O4@TiO2 hybrids show an improved visible light photocatalytic activity and photostability for the degradation of methyl orange.  相似文献   
4.
Schizophrenia is a neuropsychiatric disease that affects the nonlinear dynamics of brain activity. The primary objective of this study was to explore the complexity of magnetoencephalograms (MEG) in patients with schizophrenia. We combined a multiscale method and weighted permutation entropy to characterize MEG signals from 19 schizophrenia patients and 16 healthy controls. When the scale was larger than 42, the MEG signals of schizophrenia patients were significantly more complex than those of healthy controls (p<0.004). The difference in complexity between patients with schizophrenia and the controls was strongest in the frontal and occipital areas (p<0.001), and there was almost no difference in the central area. In addition, the results showed that the dynamic range of MEG complexity is wider in healthy individuals than in people with schizophrenia. Overall, the multiscale weighted permutation entropy method reliably quantified the complexity of MEG from schizophrenia patients, contributing to the development of potential magnetoencephalographic biomarkers for schizophrenia.  相似文献   
5.
A two dimensional plane-stress finite-element type of analysis is presented to predict the behaviour of geogrids embedded in sand under pullout loading conditions. In the analysis the interactions between soil and geogrid are simulated by non-linear springs. The stiffnesses of the springs can be determined from simple tests in a specially designed pullout box. The proposed finite element (FE) analysis is applied to interpret test results from a large scale pullout test rig. The predicted behaviour of the geogrid under pullout load agrees well with the observed data including the load-displacement properties, the displacement distribution along the longitudinal direction and the mobilisation of the frictional and bearing resistance.  相似文献   
6.
Au/TiO2/graphene composite was synthesized by the combination of electrostatic attraction and photo-reduction method. In the composite, graphene sheets act as an adsorption site for dye molecules to provide a high concentration of dye near to the TiO2 and Au nanoparticles (NPs), and work as an excellent electron transporter to separate photoinduced e ?/h + pairs. Under UV irradiation, photogenerated electrons of TiO2 are transferred effectively to Au NPs and graphene sheets, respectively, retarding the recombination of electron–hole pairs. Under visible light irradiation, the Au NPs are photo-excited due to the surface plasmon resonance effect, and charge separation is accomplished by the interfacial electron injection from the Au NPs to the conduction band of TiO2 and then transfer further to graphene sheets. As a result, compared with pure TiO2, Au/TiO2/graphene composite exhibited much higher photocatalytic activity for degradation of methylene blue under both UV and visible light irradiation, based on the synergistic effect of Au, graphene in contact with TiO2, allowing response to the visible light, effective separation of photoinduced charges, and better adsorption of the dye molecules.  相似文献   
7.
通过高温煅烧和油浴的方法构筑二维/三维(2D/3D) ZnIn2S4/TiO2异质结, 应用于光催化降解罗丹明B (RhB)和四环素(TC), 来研究异质结的构筑对TiO2可见光响应范围和光生载流子对分离效率的影响. 结果表明, TiO2维持了MOFs的形貌, 显示窄的可见光响应范围和高的光生电荷复合率, 与ZnIn2S4纳米片复合后, TiO2的比表面积增大, 光催化活性位点增多. 带隙宽度也由TiO2的3.23 eV减小到ZnIn2S4/TiO2-II的2.52 eV, 从而获得了更宽的可见光响应范围. 能带结构表明ZnIn2S4/TiO2是type II型异质结, 提高了光生载流子对的分离与转移效率. 在可见光照射下, ZnIn2S4/TiO2-II显示了最高的RhB光催化降解效率(93%), 分别是TiO2和ZnIn2S4的18和2倍. 同时, ZnIn2S4/TiO2-II也显示出比TiO2和ZnIn2S4更高的TC降解效率(90%). 循环实验表明ZnIn2S4/TiO2-II能保持良好的稳定性, 经5次循环实验后仍能降解83%的RhB. 研究表明基于MOFs衍生的TiO2构筑2D/3D ZnIn2S4/TiO2异质结是提高TiO2光催化性能的一条有效途径.  相似文献   
8.
Anatase TiO2 was prepared by a facile sol-gel method at low temperature through tailoring the pH of sol-gel without calcination. As a control, anatase TiO2 was also synthesized by the conventional sol-gel process, in which calcination at 500 °C was required to transform the amorphous oxide into highly crystalline anatase. As-prepared samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). Their photocatalytic activities were evaluated by degradation of methyl orange under UV light irradiation. On the basis of experiment results, it could be concluded that TiO2 prepared by low temperature route showed more advantages in small particle size, highly dispersion nature, abundance of surface hydroxyl groups, strong PL signal, and high photocatalytic activity over TiO2 obtained by the conventional sol-gel process. Furthermore, the reason of the former possessing higher photocatalytic activity was discussed.  相似文献   
9.
The design and fabrication of interfacial materials for anti‐icing is of great importance, since undesired ice accumulation leads to serious economic, energy, and safety issues. Substantial progress on interfacial materials for the passive removal of ice has been achieved in the past three years. The present focus review critically summarizes and analyzes recent breakthroughs in interfacial materials for anti‐icing. In particular, we focus on the effect of surface textures on the timely removal of water droplets, the microscopic mechanism of ice formation, and the effect of an interfacial layer's properties on easy shedding of formed ice with a view towards designing high‐performance and durable interfacial materials for anti‐icing beyond superhydrophobic materials.  相似文献   
10.
In this paper, we study nonlinear wrinkling dynamics of a vesicle in an extensional flow. Motivated by the recent experiments and linear theory on wrinkles of a quasi‐spherical membrane, we are interested in examining the linear theory and exploring wrinkling dynamics in a nonlinear regime. We focus on a quasi‐circular vesicle in two dimensions and show that the linear analytical results are qualitatively independent of the number of dimensions. Hence, the two‐dimensional studies can provide insights into the full three‐dimensional problem. We develop a spectral accurate boundary integral method to simulate the nonlinear evolution of surface tension and the nonlinear interactions between flow and membrane morphology. We demonstrate that for a quasi‐circular vesicle, the linear theory well predicts the characteristic wavenumber during the wrinkling dynamics. Nonlinear results of an elongated vesicle show that there exist dumbbell‐like stationary shapes in weak flows. For strong flows, wrinkles with pronounced amplitudes will form during the evolution. As far as the shape transition is concerned, our simulations are able to capture the main features of wrinkles observed in the experiments. Interestingly, numerical results reveal that, in addition to wrinkling, asymmetric rotation can occur for slightly tilted vesicles. The mathematical theory and numerical results are expected to lead to a better understanding of related problems in biology such as cell wrinkling. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号