首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   17篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2012年   2篇
  2010年   3篇
  2009年   1篇
  2006年   3篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 0 毫秒
1.
Fluorescent gold nanoclusters (Au-NCs) were synthesized by a one-pot method using 11-mercaptoundecanoic acid as a reducing and capping reagent. It is found that the red fluorescence of the Au-NCs is quenched by the introduction of Eu(III) at pH 7.0, but that fluorescence is restored on addition of phosphate. The Au-NCs were investigated by transmission electron microscopy and fluorescence photographs. The effect of pH on fluorescence was studied in the range from pH 6 to 10 and is found to be strong. Based on these findings, we have developed an assay for phosphate. Ions such as citrate, Fe(CN)6 3?, SO4 2?, S2O8 2?, Cl?, HS?, Br?, AcO?, NO2 ?, SCN?, ClO4 ?, HCO3 ?, NO3 ?, Cd2+, Ba2+, Zn2+, Mg2+, and glutamate do not interfere, but ascorbate and Fe3+ can quench Au-NCs fluorescence. The fluorescent nanocluster probe responds to phosphate in the range from 0.18 to 250 μM, and the detection limit is 180 nM. The probe also responds to pyrophosphate and ATP. Figure
Off/on fluorescence sensor for phosphate based on Eu3+-modulated Au NCs thanks to the competition of oxygen-donor atoms from phosphate with those from the carboxylate groups was developed  相似文献   
2.
We report on the easy and fast immobilization of glucose oxidase (GOD) and laccase by mechanical compression with graphite particles to form disc electrodes. The electrical wiring of GOD and laccase was efficiently carried out by their co-inclusion with ferrocene (Fc) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) respectively. A glucose/air compartment-less biofuel cell was constructed based on the association of GOD-ferrocene-graphite disc and laccase-ABTS – graphite disc electrodes as bioanode and biocathode respectively. Such biofuel cell yielded a power density of 23 μW cm?2 at 0.33 V as well as an open-circuit voltage and a short-circuit current of 0.63 V and 166 μA, respectively.  相似文献   
3.
4.
Elelctrogenerated chemiluminescence (ECL) of electropolymerized films based on [(2,2′-bipyridyl)(4-(2-pyrrol-1-ylethyl)-4′-methyl-2,2′-bipyridyl)2]ruthenium (II) was firstly investigated in both organic and aqueous solution. The ECL behaviors have been explained by two typical mechanisms, namely, redox-cycling type and oxidative-reduction type. For the former, no co-reactant was required and for the latter, tripropylamine (TPA) and (NH4)2C2O4 were selected as co-reactants in the organic and aqueous system, respectively.  相似文献   
5.
Ding SN  Xu JJ  Chen HY 《Talanta》2006,70(2):403-407
An easy and universal wall-jet configuration for microchip CE-ECL detection system was constructed and investigated in this work. Two detection modes of pre-column and post-column were applied to the above system. TPA, tramadol and lidocaine were chosen as model analytes to estimate the system in both modes. The important operational parameters such as the concentration of luminescent reagent and the distance between the separation outlet and the working electrode were optimally obtained and compared for the first time.  相似文献   
6.
Ru being served: A pyrene-Ru/SWCNT nanohybrid was formed through noncovalent π-π stacking interactions. After oxidative treatment, the pyrene-Ru/SWCNT-functionalized Pt electrode achieved a highly reversible redox process and exhibited excellent electrogenerated chemiluminescence behavior.  相似文献   
7.
Multicolor electrochemiluminescence (ECL) of semiconductor nanocrystals tuned by size effect has been successfully achieved using quantum dots (QDs) with core-shell structure for the first time. It would open a new way and provide a guidance for design and preparation of stable and strong multicolor ECL emitters for simultaneous multicomponent analysis application.  相似文献   
8.
Journal of Solid State Electrochemistry - A novel self-electrochemiluminescent (self-ECL) nanomaterial, CdTe quantum dots, was prepared by the one-pot method using 2-diethylaminoethanethiol...  相似文献   
9.
The cationic luminescence probe, tris(2,2′-bipyridyl)ruthenium(II) complex ([Ru(bpy)3]2+), was incorporated into laponite-modified glassy carbon electrode (GCE) via two strategies, namely, the adsorption and intercalation methods. These two incorporation methods resulted in different microenvironment for the immobilized [Ru(bpy)3]2+ within laponite as well as the different host–guest and guest–guest interactions. Herein, cyclic voltammetry and electrochemiluminescence (ECL) were innovatively performed to monitor the interactions. Tripropylamine (TPA) was used as coreactant in the electrochemical and ECL system.  相似文献   
10.
Ding SN  Xu JJ  Chen HY 《Electrophoresis》2005,26(9):1737-1744
The major goal of this work was to develop a new solid-state electrochemiluminescence (ECL) detector suitable for capillary electrophoresis (CE). The detector was fabricated by coating a sol-gel derived zirconia (ZrO(2))-Nafion composite film on a graphite electrode, then the zirconia-Nafion modified electrode was immersed in tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3) (2+)) solution to immobilize this active chemiluminescence reagent. The voltammetric and ECL behaviors of the detector were investigated and optimized in tripropylamine solution. The ratio of 53% for zirconia in the zirconia-Nafion composite provided the highest luminescence intensity of immobilized Ru(bpy)(3) (2+). The ECL can maintain its stability very well in the phosphate solution in the period of 5-90 h when the solid-state ECL detector was immersed in the solution all the time. The optimum distance of capillary outlet to the solid-state ECL detector has been found to be ca. 50-80 microm for a 75 microm capillary. The effects of ionic strength and pH of ECL solution on peak height were investigated. The CE with solid-state ECL detector system was successfully used to detect tripropylamine, lidocaine, and proline. The detection limits (S/N = 3) were 5 x 10(-9) mol.L(-1) for tripropylamine, 1 x 10(-8) mol.L(-1) for lidocaine and 5 x 10(-6) mol.L(-1) for proline, and the linear ranges were from 1.0 x 10(-8) to 1.0 x 10(-5) mol.L(-1) for tripropylamine, 5.0 x 10(-7) mol.L(-1) to 1.0 x 10(-5) mol.L(-1) for lidocaine and 1.0 x 10(-5) to 1.0 x 10(-3) mol.L(-1) for proline, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号