首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   7篇
数学   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
We demonstrate compositionally tunable photoluminescence in complex transparent conducting oxide nanocrystals. Alloyed gallium indium oxide (GIO) nanocrystals with variable crystal structures are prepared by a colloidal method throughout the full composition range and studied by different structural and spectroscopic methods, including photoluminescence and X-ray absorption. The structures and sizes of the GIO nanocrystals can be simultaneously controlled, owing to the difference in the growth kinetics of In(2)O(3) and Ga(2)O(3) nanocrystals and the polymorphic nature of both materials. Using the synthesized nanocrystal series, we demonstrate the structural and compositional dependences of the photoluminescence of GIO nanocrystals. These dependences, induced by the interactions between specific defect sites acting as electron donors and acceptors, are used to achieve broad emission tunability in the visible spectral range at room temperature. The nature of the photoluminescence is identified as donor-acceptor pair recombination and changes with increasing indium content owing to the changes in the energy states of, and interactions between, donors and acceptors. Structural analysis of GIO nanocrystals by extended X-ray absorption fine structure spectroscopy reveals that In(3+) occupies only octahedral, rather than tetrahedral, sites in the spinel-type γ-Ga(2)O(3) nanocrystal host lattice, until reaching the substitutional incorporation limit of ca. 25%. The emission decay dynamics is also strongly influenced by the nanocrystal structure and composition. The oxygen vacancy defects, responsible for the observed photoluminescence properties, are also implicated in other functional properties, particularly conductivity, enabling the application of colloidal GIO nanocrystals as integrated optoelectronic materials.  相似文献   
2.
A new cold fiber solid-phase microextraction device was designed and constructed based on thermoelectric cooling. A three-stage thermoelectric cooler (TEC) was used for cooling a copper rod coated with a poly(dimethylsiloxane) (PDMS) hollow fiber, which served as the solid-phase microextraction (SPME) fiber. The copper rod was mounted on a commercial SPME plunger and exposed to the cold surface of the TEC, which was enclosed in a small aluminum box. A heat sink and a fan were used to dissipate the generated heat at the hot side of the TEC. By applying an appropriate dc voltage to the TEC, the upper part of the copper rod, which was in contact to the cold side of the TEC, was cooled and the hollow fiber reached a lower temperature through heat transfer. A thermocouple was embedded in the cold side of the TEC for indirect measurement of the fiber temperature. The device was applied in quantitative analysis of off-flavors in a rice sample. Hexanal, nonanal, and undecanal were chosen as three off-flavors in rice. They were identified according to their retention times and analyzed by GC-flame ionization detection instrument. Headspace extraction conditions (i.e., temperature and time) were optimized. Standard addition calibration graphs were obtained at the optimized conditions and the concentrations of the three analytes were calculated. The concentration of hexanal was also measured using a conventional solvent extraction method (697+/-143ng/g) which was comparable to that obtained from the cold fiber SPME method (644+/-8). Moreover, the cold fiber SPME resulted in better reproducibility and shorter analysis time. Cold fiber SPME with TEC device can also be used as a portable device for field sampling.  相似文献   
3.
A new automated headspace solid-phase microextraction (HS-SPME) sampling device was developed, with the capability of heating the sample matrix and simultaneously cooling the fiber coating. The device was evaluated for the quantitative extraction of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The proposed device improves the efficiency of the release of analytes from the matrix, facilitates the mass transfer into the headspace and significantly increases the partition coefficients of the analytes, by creating a temperature gap between the cold-fiber (CF) coating and the hot headspace. The reliability and applicability of previously reported cold-fiber devices are significantly enhanced by this improvement. In addition, it can be easily adopted for full automation of extraction, enrichment and introduction of different samples using commercially available autosampling devices. Sand samples spiked with PAHs were used as solid matrices and the effect of different experimental parameters were studied, including the extraction temperature, extraction time, moisture content, and the effect of sonication and modifier under optimal experimental conditions, linear calibration curves were obtained in the range of 0.0009-1000 ng/g, with regression coefficients higher than 0.99 and detection limits that ranged from 0.3 to 3 pg/g. Reproducible, precise and high throughput extraction, monitoring and quantification of PAHs were achieved with the automated cold-fiber headspace solid-phase microextraction (CF-HS-SPME) device coupled to GC-flame ionization detection. Determination of PAHs in certified reference sediments using the proposed approach exhibited acceptable agreement with the standard values.  相似文献   
4.
A new approach is described to capture nano‐size aerosols on internally‐cooled micro tubing of the solid‐phase microextraction (SPME) device followed by convenient introduction of the collected analytes into analytical instrument. Particles were generated using an aerosol formation by homogeneous nucleation of an organic vapor, and subsequent growth to nano‐size particles by coagulation of decanedioic acid, bis[2‐ethylhexyl] ester (DEHS). The approach was validated by using carbon dioxide‐cooled micro tubing to collect the nanosize DEHS particles followed by analyses on GC‐flame ionization detector (FID). Particle size ranged from 150 to 590 nm. Temperature difference between the SPME device and DEHS particles mixture created a temperature gradient and resulted in thermophoretic effect that was determining the extraction rate. SPME device was cooled to as low as –75°C, while the DEHS remained close to room temperature. Several aspects of nanoparticle sampling were tested to demonstrate the principle of the sampling approach. These included the effects of thermal gradient, sample flow rate, sampling time, CO2 delivery mode (constant coolant delivery vs. constant temperature), and particle size. Results were normalized to measure particulate concentrations using direct sampling with PTFE filters. Nanoparticle extractions of DEHS mass were proportional to sampling time. Normalized mass of DEHS extracted increased with increase in temperature gradient and with increase of the cross flow velocity. Preliminary results indicate that the variation of heat transfer boundary layer caused by the variation in the cross flow velocity produce self‐compensating effect at constant coolant delivery, indicating that this approach could be used for field determinations including the time‐weighted average sampling of nanoparticles. Thus, it may be possible to develop simple device based on this concept for field applications.  相似文献   
5.
The kinetics of phase transformation of colloidal In(2)O(3) nanocrystals (NCs) during their synthesis in solution was explored by a combination of structural and spectroscopic methods, including X-ray diffraction, transmission electron microscopy, and extended X-ray absorption fine structure spectroscopy. Johnson-Mehl-Avrami-Erofeyev-Kholmogorov (JMAEK) and the interface nucleation models were used to analyze the isothermal kinetic data for the phase transformation of NCs in the temperature range of 210-260 °C. The results show that NCs are initially stabilized in the metastable corundum (rh-In(2)O(3)) phase. The phase transformation occurs via nucleation of cubic bixbyite (bcc-In(2)O(3)) phase at the interface between contacting rh-In(2)O(3) NCs, and propagates rapidly throughout the NC volume. The activation energy of the phase transformation was determined from the Arrhenius expression to be 152 ± 60 kJ/mol. The interface nucleation rate is maximal at the beginning of the phase transformation process, and decreases over the course of the reaction due to a decrease in the concentration of rh-In(2)O(3) NCs in the reaction mixture. In situ high-temperature XRD patterns collected during nonisothermal treatment of In(2)O(3) NCs reveal that phase transformation of smaller NCs occurs at a faster rate and lower temperature, which is associated with their higher packing density and contact formation probability. Because NC surfaces and interfaces play a key role in phase transformation, their control through the synthesis conditions and reaction kinetics is an effective route to manipulate NC structure and properties.  相似文献   
6.
A simple in situ solvent formation microextraction methodology based on the application of ionic liquid (IL) as an extractant solvent and sodium hexafluorophosphate (NaPF6) as an ion-pairing agent was proposed for the preconcentration of trace levels of cadmium. In this method cadmium was complexed with O,O-diethyldithiophosphate (DDTP) and extracted into an ionic liquid phase. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS). ISFME is a simple and rapid method for extraction and preconcentration of metal ions from sample solutions containing a high concentration of salt. Some effective factors that influence the microextraction efficiency were investigated and optimized. Under the optimum experimental conditions, the limit of detection (3 s) and the enhancement factor were 0.07 μg L−1 and 78, respectively. The relative standard deviation (R.S.D.) was obtained 2.42%. The accuracy of the method was confirmed by analyzing certified reference materials for trace elements in seawater (GBW (E) 080040 seawater). The proposed method was successfully applied for the determination of cadmium in water samples and food grade salts.  相似文献   
7.
In this paper, proper minimal elements of a given nonconvex set in a real ordered Banach space are defined utilizing the limiting (Mordukhovich) normal cone. The newly defined points are called limiting proper minimal (LPM) points. It is proved that each LPM is a proper minimal in the sense of Borwein under some assumptions. The converse holds in Asplund spaces. The relation of LPM points with Benson, Henig, super and proximal proper minimal points are established. Under appropriate assumptions, it is proved that the set of robust elements is a subset of the set of LPM points, and the set of LPM points is dense in that of minimal points. Another part of the paper is devoted to scalarization-based and distance function-based characterizations of the LPM points. The paper is closed by some results about LPM solutions of a set-valued optimization problem via variational analysis tools. Clarifying examples are given in addition to the theoretical results.  相似文献   
8.
Circular dichroism (CD) spectroscopy, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the interaction between copper(II) complex of compartmental Schiff base ligand (L), N,N'-bis(3-hydroxysalicylidene)ethylenediamine, and bovine serum albumin (BSA) in 0.1 mol dm(-3) phosphate buffer solution adjusted to physiological pH 7.0 containing 20% (w/w) dimethylsulfoxide at room temperature. CD spectra show that the interaction of the copper(II) complex with BSA leads to changes in the alpha-helical content of BSA and therefore changes in secondary structure of the protein with the slight red shift (2 nm) in CD spectra. From the voltammetric data, i.e. changes in limiting current with addition of BSA, the binding constant (K) of the interaction of copper(II) complex with BSA was found to be 1.96 x 10(4)dm(3)mol(-1). From the shifts in potential with the addition of BSA, the equilibrium constant ratio (K(2)/K(1)) for the binding of the oxidized Cu(II)L (K(1)) and reduced Cu(I)L (K(2)) species to BSA was found to be 3.77, which shows that the reduced form Cu(I)L is bound more strongly to BSA than the oxidized form Cu(II)L.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号