首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   15篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1992年   1篇
  1985年   1篇
  1982年   4篇
  1980年   2篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
The (13)C pulsed ENDOR and NMR study of [meso-(13)C-TPPFe(OCH(3))(OO(t)Bu)](-) performed in this work shows that although the unpaired electron in low-spin ferrihemes containing a ROO(-) ligand resides in a d(pi) orbital at 8 K, the d(xy) electron configuration is favored at physiological temperatures. The variable temperature NMR spectra indicate a dynamic situation in which a heme with a d(pi) electron configuration and planar porphyrinate ring is in equilibrium with a d(xy) electron configuration that has a ruffled porphyrin ring. Because of the similarity in the EPR spectra of the hydroperoxide complexes of heme oxygenase, cytochrome P450, and the model heme complex reported herein, it is possible that these two electron configurations and ring conformations may also exist in equilibrium in the enzymatic systems. The ruffled porphyrinate ring would aid the attack of the terminal oxygen of the hydroperoxide intermediate of heme oxygenase (HO) on the meso-carbon, and the large spin density at the meso-carbons of a d(xy) electron configuration heme suggests the possibility of a radical mechanism for HO. The dynamic equilibrium between the ruffled (d(xy)) and planar (d(pi)) conformers observed in the model complexes also suggests that a flexible heme binding cavity may be an important structural motif for heme oxygenase activity.  相似文献   
2.
An undecasubstituted chloroiron corrolate, octamethyltriphenylcorrolatoiron chloride, (OMTPCorr)FeCl, has been synthesized and studied by X-ray crystallography and (1)H and (13)C NMR spectroscopy. It is found that, although the structure is slightly saddled, the average methyl out-of-plane distance is only 0.63 Angstroms, while it is much greater for the dodecasubstituted porphyrinate analogue (OMTPP)FeCl (1.19 Angstroms) (Cheng, R.-J.; Chen, P.-Y.; Gau, P.-R.; Chen, C.-C.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 2563-2569). In addition, the distance of iron from the mean plane of the four macrocycle nitrogens is also smaller for (OMTPCorr)FeCl (0.387 Angstroms) than for (OMTPP)FeCl (0.46 Angstroms). The (1)H and (13)C NMR spectra of (OMTPCorr)FeCl, as well as the chloroiron complexes of triphenylcorrolate, (TPCorr)FeCl; 7,13-dimethyl-2,3,8,12,17,18-hexaethylcorrolate, (DMHECorr)FeCl; 7,8,12,13-tetramethyl-2,3,17,18-tetraethylcorrolate, (TMTECorr)FeCl; and the phenyliron complex of 7,13-dimethyl-2,3,8,12,17,18-hexaethylcorrolate, (DMHECorr)FePh, have been assigned, and the spin densities at the carbons that are part of the aromatic ring of the corrole macrocycle have been divided into the part due to spin delocalization by corrole --> Fe pi donation and the part due to the unpaired electron present on the corrole ring. It is found that although the spin density at the beta-pyrrole positions is fairly similar to that of (TPCorr)FeCl, the meso-phenyl-carbon shift differences delta(m) - delta(p) are opposite in sign of those of (TPCorr)FeCl. This finding suggests that the radical electron is ferromagnetically coupled to the unpaired electrons on iron, rather than antiferromagnetically coupled, as in all of the other chloroiron corrolates. The solution magnetic moment was measured for (OMTPCorr)FeCl and found to be mu(eff) = 4.7 +/- 0.5 micro(B), consistent with S = 2 and ferromagnetic coupling. From this study, two conclusions may be reached about iron corrolates: (1) the spin states of chloroiron corrolates are extremely sensitive to the out-of-plane distance of iron, and (2) pyrrole-H or -C shifts are not useful in delineating the spin state and electron configuration of (anion)iron corrolates.  相似文献   
3.
According to IR spectroscopic studies, a Ti–Mo heteropolyacid is formed on the surface of Ti–Mo catalysts prepared from ammonium paramolybdate and TiO2.
- , Ti–Mo TiO2 Ti–Mo .
  相似文献   
4.
The perchloratoiron(III) complexes of a series of 2,6-disubstituted tetraphenylporphyrin ligands, where the 2,6-phenyl substituents were -H, -F, -Cl, -Br, or -OMe, as well as two 2,4,6-phenyl-substituted complexes, where the substituents were -Me and -OMe, have been investigated as a function of temperature by 1H NMR spectroscopy. Curvature in the 1/T dependence was evident in most cases. Forced linear extrapolation of the temperature dependence observed over the range of the study yielded Curie plots that include negative slopes with very large positive 1/T intercepts (Cl approximately Br > Me > H) to negative slope with near zero intercept (tri-OMe) to positive slope with very large negative intercept (F, di-OMe). The NMR results were combined with EPR spectroscopic data and curve-fitting procedures based on an expanded Curie law to arrive at a consistent overview of the variety of temperature-dependence behaviors observed. This overview relies upon the premise that, in addition to the ground state observed by EPR spectroscopy, one (or more) thermally accessible excited state(s) are populated to varying degrees over the temperature range of the NMR measurements. If only one excited state is considered, the analysis is consistent with the ground state being a largely intermediate-spin state (S = 3/2) for the majority of the complexes but a largely high-spin state (S = 5/2) for ((2,6-F2)4TPP)FeOClO3 and ((2,6-(OMe)2)4TPP)FeOClO3.  相似文献   
5.
Catalytic properties of Ti–Mo oxide catalysts are shown to be determined to a great extent by the Ti–Mo heteropoly acid anchored to the TiO2 surface which is formed during the catalyst preparation.
, - - , .
  相似文献   
6.
The activity of silica-molybdenum catalyts in propylene oxidation is shown to be determined by the partially dehydrated silica-molybdenum heteropolyacid stabilized by the SiO2 surface.
, , SiO2.
  相似文献   
7.
In this work we report the assignment of the majority of the ferriheme resonances of low-spin nitrophorins (NP) 1 and 4 and compare them to those of NP2, published previously. It is found that the structure of the ferriheme complexes of NP1 and NP4, in terms of the orientation of the ligand(s), can be determined with good accuracy by NMR techniques in the low-spin forms and that angle plots proposed previously (Shokhirev, N. V.; Walker, F. A. J. Biol. Inorg. Chem. 1998, 3, 581-594) describe the angle of the effective nodal plane of the axial ligands in solution. The effective nodal plane of low-spin NP1, NP4, and NP2 complexes is in all cases of imidazole and histamine complexes quite similar to the average of the His-59 or -57 and the exogenous ligand angles seen in the X-ray crystal structures. For the cyanide complexes of the nitrophorins, however, the effective nodal plane of the axial ligand does not coincide with the actual histidine-imidazole plane orientation. This appears to be a result of the contribution of an additional source of asymmetry, the orientation of one of the zero-ruffling lines of the heme. Probably this effect exists for the imidazole and histamine complexes as well, but because the effect of asymmetry that occurs from planar exogenous axial ligands is much larger than the effect of heme ruffling the effect of the zero-ruffling line can only be detected for the cyanide complexes, where the only ligand plane is that of the proximal histidine. The three-dimensional structures of the three NP-CN complexes, including that of NP2-CN reported herein, confirm the high degree of ruffling of these complexes. There is an equilibrium between the two heme orientations (A and B) that depends on the heme cavity shape and changes somewhat with exogenous axial ligand. The A:B ratio can be much more accurately measured by NMR spectroscopy than by X-ray crystallography.  相似文献   
8.
In this work, we report the assignment of the majority of the ferriheme resonances of high-spin nitrophorins (NPs) 1 and 4 and compare them to those of NP2, published previously. It is found that the structures of the ferriheme complexes of NP1 and NP4, in terms of the orientation of the histidine imidazole ligand, can be described with good accuracy by NMR techniques and that the angle plot proposed previously for the high-spin form of the NPs (Shokhireva, T. Kh.; Shokhirev, N. V.; Walker, F. A. Biochemistry 2003, 42, 679-693) describes the angle of the effective nodal plane of the axial histidine imidazole in solution. There is an equilibrium between the two heme orientations (A and B), which depends on the heme cavity shape, which can be altered by mutation of amino acids with side chains (phenyl vs tyrosyl) near the potential position where a heme vinyl group would be in one of the isomers. The A:B ratio can be much more accurately measured by NMR spectroscopy than by X-ray crystallography.  相似文献   
9.
Studies of the catalysts obtained by supporting P–Mo, Si–Mo and Ti–Mo heteropolyacids on anatase in thiophene hydrodesulfurization have revealed that the presence of HPA in the initial catalysts promotes the formation of the molybdenum state ensuring high reaction rates. A possibility for HPA synthesis when supporting paramolybdate on TiO2, accounts for the great effect of the support on the properties of the catalyst.
, -, -, - , . , , . .
  相似文献   
10.
The (1)H{(13)C} HMQC experiment at natural-abundance (13)C provides a very useful way of determining not only (1)H but also (13)C chemical shifts of most heme substituents, without isotopic labeling of the hemin. This is true both in model low-spin ferriheme complexes and in low-spin ferriheme proteins, even when the proton resonances are buried in the protein diamagnetic region, because the carbon shifts are much larger than the proton shifts. In addition, in many cases, the protohemin methyl cross peaks are fairly linearly related to each other, with the slope of the correlation, δ(C)/δ(H), being approximately -2.0 for most low-spin ferriheme proteins. The reasons why this should be the case, and when it is not, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号