首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.

Sodium manganese hexacyanoferrate (NaMnHCF) was synthesized by a hydrothermal method and investigated as a cathode material for sodium-ion batteries. The morphology and the structure of NaMnHCF were investigated by X-ray diffraction, scanning electron microscopy, and EDX analysis. New composition of NaMnHCF cathode material for sodium-ion batteries with eco-friendly water-based binder consisting of conducting polymer poly-3,4-ethylenedioxythiopene/polystyrene sulfonate (PEDOT:PSS) dispersion and carboxymethyl cellulose (СМС) was proposed. The electrochemical properties of NaMnHCF cathode material with conductive polymer binder were investigated by cyclic voltammetry and galvanostatic charge-discharge, and the results were compared with the performance of a conventional PVDF-bound material. It was shown that the initial discharge capacity of electrodes with conductive binder is 130 mAh g−1, whereas the initial discharge capacity of PVDF-bound electrodes was 109 mAh g−1 (both at current density 120 mA g−1, values normalized by NaMnHCF mass). The material with conductive binder also has better rate capability; however, it is losing in cycling capability to the electrode composition with conventional PVDF binder.

  相似文献   
3.
Russian Journal of Applied Chemistry - Manganese hexacyanoferrate was synthesized by the hydrothermal method and its cubic structure was established. Manganese hexacyanoferrate powder was studied...  相似文献   
4.
Lithium-ion battery based on LiMn2O4/Li4Ti5O12 materials was assembled for the first time. The cathode and anode of this battery are prepared with the aqueous combined binder poly-3,4-ethylenedioxythiophene: polystyrene sulfonate/carboxymethylcellulose (without polyvinylidene fluoride). The capacity of the LiMn2O4/Li4Ti5O12 battery was found to be 75 mA h g–1 at 0.1 C and 55 mA h g–1 at 1 C. A 95% capacity was retained after 100 charge-discharge cycles. The batteries demonstrated a high Coulombic efficiency close to 100%. Scanning electron microscopy demonstrated that using the conducting binder poly-3,4-ethylenedioxythiophene: polystyrene sulfonate/carboxymethylcellulose provides formation of dense compact layers of electrode materials with good adhesion to the substrate. The electrode structure remains maintained after 100 charge-discharge cycles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号