首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
排序方式: 共有6条查询结果,搜索用时 91 毫秒
1
1.
2.
Magnetic alignment of self-assembled anthracene organogel fibers   总被引:1,自引:0,他引:1  
High magnetic fields are shown to be remarkably effective to orient self-assembled 2,3-bis-n-decyloxyanthracene (DDOA) fibers during organogel preparation. Magnetic orientation of DDOA results in a highly organized material displaying a fiber-orientation order parameter of 0.85, a large linear birefringence, and fluorescence dichroism. The aligned organogel is stable after removal of the magnetic field at room temperature and consists of fibers oriented perpendicular to the magnetic field direction, as shown by scanning electron microscopy. Models for the molecular organization within the gel fibers are discussed upon quantitative analysis of the birefringence. Prospectively, magnetic alignment can be used to improve specific properties of organogel materials.  相似文献   
3.
We report the experimental observation of magnetic field deformation of spherical nanocapsules, self-assembled from sexithiophene molecules, into oblate spheroids, confirming a long-standing theoretical prediction. The magnetically deformed objects can be trapped in a compatible organogel to make them suitable for further investigations and applications. Our results show that strong magnetic forces can be effectively used, in a contact-free manner, as a tool to control the self-organization of a whole class of functional organic molecules.  相似文献   
4.
High magnetic fields were used to deform spherical nanocapsules, self-assembled from bolaamphiphilic sexithiophene molecules. At low fields the deformation--measured through linear birefringence-scales quadratically with the capsule radius and with the magnetic field strength. These data confirm a long standing theoretical prediction [W. Helfrich, Phys. Lett. A 43, 409 (1973)10.1016/0375-9601(73)90396-4], and permit the determination of the bending rigidity of the capsules as (2.6+/-0.8) x 10(-21) J. At high fields, an enhanced rigidity is found which cannot be explained within the Helfrich model. We propose a complete form of the free energy functional that accounts for this behavior, and allows discussion of the formation and stability of nanocapsules in solution.  相似文献   
5.
6.
A magnetic field has been utilized for producing highly oriented films of a substituted hexabenzocoronene (HBC). Optical microscopy studies revealed large area HBC monodomains that covered the entire film, while wide-angle X-ray measurements showed that the HBC molecules are aligned with their planes along the applied field. On the basis of this method, solution-processed field-effect transistors (FET) have been constructed with charge carrier mobilities of up to 10(-3) cm2/V.s, which are significantly enhanced with respect to the unaligned material. Exceptionally high mobility anisotropies of 25-75 for current flow parallel and perpendicular to the alignment direction have been measured as a function of the channel length. Atomic force microscopy performed on the FET structures reveals fibril superstructures that are oriented perpendicularly to the magnetic field direction, consisting of molecular columns with a slippage angle of 40 degrees between the molecules. For channel lengths larger than 2.5 mum, the fibrils are smaller than the electrode spacing, which adversely affects the device performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号