首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   28篇
化学   302篇
晶体学   4篇
力学   13篇
数学   10篇
物理学   55篇
  2023年   4篇
  2022年   5篇
  2021年   13篇
  2020年   11篇
  2019年   12篇
  2018年   5篇
  2017年   3篇
  2016年   15篇
  2015年   15篇
  2014年   14篇
  2013年   18篇
  2012年   27篇
  2011年   23篇
  2010年   13篇
  2009年   12篇
  2008年   25篇
  2007年   18篇
  2006年   22篇
  2005年   17篇
  2004年   13篇
  2003年   15篇
  2002年   9篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1967年   1篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
1.
2.
3.
Quantitative analysis of metal cation doping by solid oxide electrochemical doping (SOED) has been performed under galvanostatic doping conditions. A M–β″-Al2O3 (M=Ag, Na) microelectrode (contact radius: about 10 μm) was used as cation source to attain a homogeneous solid–solid contact between the β″-Al2O3 and doping target. In Ag doping into alkali borate glass, the measured dopant amount closely matched the theoretical value. High Faraday efficiencies of above 90% were obtained. This suggests that the dopant amount can be precisely controlled on a micromole scale by the electric charge during electrolysis. On the other hand, current efficiencies of Na doping into Bi2Sr2CaCu2Oy (BSCCO) ceramics depended on the applied constant current. Efficiencies of above 80% were achieved at a constant current of 10 μA (1.6 A cm−2). The relatively low efficiencies were explained by the saturation of BSCCO grain boundaries with Na. By contrast, excess Na was detected on the anodic surface of ceramics at a constant current of 100 μA (16 A cm−2). In the present study, we demonstrate that SOED enables micromole-scale control over dopant amount.  相似文献   
4.
5.
6.
High diastereo- and enantioselectivities were obtained for the asymmetric 1,3-dipolar cycloaddition of azomethine ylides generated from N-alkylideneglycine esters with dipolarophiles using chiral phosphine-copper complexes as catalysts. Whereas the cycloaddition of azomethine ylides catalyzed by metal salts generally afforded endo-adducts as the predominant product, the present method is the first example of an exo-selective cycloaddition. [reaction: see text]  相似文献   
7.
8.
In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way.  相似文献   
9.
The ruthenium-catalyzed reaction of aromatic ketones with arylboronic acid esters (arylboronates) gave the ortho arylation product. For this coupling reaction, a RuH2(CO)(PPh3)3 complex exhibited the highest catalytic activity among the complexes screened. Several aromatic ketones, for example, acetophenones, acetonaphthone, alpha-tetralone, and benzosuberone, can be used in this coupling reaction. A variety of arylboronates containing electron-donating (OMe and NMe2) and -withdrawing (F and CF3) groups were found to react with aromatic ketones to give the corresponding aylation products. The corresponding arylboronic acids could be used in this coupling reaction, but the yields were slightly lower, as compared to those of the reaction using the corresponding arylboronates.  相似文献   
10.
An alternating copolymer, Copoly‐1 , of thiophene and N‐(phenylethynyl)pyrrole was prepared by palladium‐catalyzed polycondensation. Powder X‐ray diffraction (XRD) analysis indicated that Copoly‐1 formed a stacked packing structure with doubly‐running polymer main chains. Optical data support the molecular and packing structures of Copoly‐1 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2219–2224, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号