首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   18篇
力学   1篇
数学   1篇
物理学   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   4篇
  2008年   1篇
  2003年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
In this work, an easily obtained procedure was successfully implemented to prepare novel palladium nanoparticles decorated on triethanolammonium chloride ionic liquid‐functionalized TiO2 nanoparticles [TiO2/IL‐Pd]. Different methods were carried out for characterizations of the synthesized nanocatalyst (HR‐TEM, XPS, XRD, FE‐SEM, EDX, FT‐IR and ICP). TiO2/IL‐Pd indicated good catalytic activity for the Suzuki–Miyaura cross‐coupling reaction of arylboronic acid with different aryl halides in aqueous media at ambient temperature. The recycled catalyst was investigated with ICP to amount of Pd leaching after 6 times that had diminished slightly, Thus, was confirmed that the nanocatalyst has a good sustainability for C–C Suzuki–Miyaura coupling reaction. The catalyst can be conveniently separated by filtration of the reaction mixture and reused for 6 times without significant loss of its activity. It supplies an environmentally benign alternative path to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   
2.
A highly sensitive amperometric Prussian blue-based hydrogen peroxide sensor was developed using 3D pyrolytic carbon microelectrodes. A 3D printed multielectrode electrochemical cell enabled simultaneous highly reproducible Prussian blue modification on multiple carbon electrodes. The effect of oxygen plasma pre-treatment and deposition time on Prussian blue electrodeposition was studied. The amperometric response of 2D and 3D sensors to the addition of hydrogen peroxide in μM and sub-μM concentrations in phosphate buffer was investigated. A high sensitivity comparable to flow injection systems and a detection limit of 0.16 μM was demonstrated with 3D pyrolytic carbon microelectrodes at stirred batch condition  相似文献   
3.
The dehydrotropylium–Co2(CO)6 ion was generated by the action of HBF4 or BF3 ? OEt2 on the corresponding cycloheptadienynol complex, which in turn has been prepared in four steps from a known diacetoxycycloheptenyne complex. The reaction of the cycloheptadienynol complex via the dehydrotropylium–Co2(CO)6 ion with several nucleophiles results in substitution reactions with reactive nucleophiles (N>1) under normal conditions, and a radical dimerisation reaction in the presence of less reactive nucleophiles. Competitive reactions of the cycloheptadienynol complex with an acyclic trienynol complex show no preference for generation of the dehydrotropylium–Co2(CO)6 ion over an acyclic cation. DFT studies on the dehydrotropylium–Co2(CO)6 ion, specifically evaluation of its harmonic oscillator model of aromaticity (HOMA) value (+0.95), its homodesmotic‐reaction‐based stabilisation energy (≈2.8 kcal mol?1) and its NICS(1) value (?2.9), taken together with the experimental studies suggest that the dehydrotropylium–Co2(CO)6 ion is weakly aromatic.  相似文献   
4.
Facile synthesis and characterization of the highly conducting, thermodynamically favored, Tl(TCNQ) phase II microrods/nanorods onto conducting (glassy carbon (GC)) and semiconducting (indium tin oxide (ITO)) surfaces have been accomplished via redox-based transformation of 7,7,8,8-tetracynoquinodimethane (TCNQ) microcrystals. This electrochemically irreversible process involves the one-electron reduction of surface-confined solid TCNQ into TCNQ·? with concomitant incorporation of the Tl+ (aq) cation, from the bulk solution, at the triple-phase boundary, GC or ITO│(TCNQ(s)/TCNQ·? (s))│Tl+ (aq), through a nucleation/growth mechanism. Consistent with the conceptually related M(TCNQ) systems (M+ = Li+, Na+, K+, Ag+, and Cu+), the TCNQ/Tl(TCNQ) interconversion is strongly dependent upon scan rate, Tl+ (aq) electrolyte concentration, and the method of attaching solid TCNQ onto the electrode surface. Spectroscopic (infrared (IR) and Raman), microscopic (scanning electron microscopy (SEM)), and surface science (X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD)) characterization of the electrochemically synthesized material revealed formation of pure Tl(TCNQ) phase II. Importantly, the generic solid-state electrochemical approach used in this study not only offers facile protocol for controllable and preferential synthesis of Tl(TCNQ) phase II but also provides access to fabricate and tune the morphology to yield microrod/nanorod networks.
Graphical abstract Controlled synthesis of the highly conducting Tl(TCNQ) phase II with either nanowire or rod-like morphologies is achieved via a redox-based solid-solid phase interconversion of TCNQ microcrystals in the presence of a Tl+ (aq) electrolyte.
  相似文献   
5.
Some new tetradentate ligands with a NNOS coordination sphere were prepared and their corresponding nickel(II) complexes were synthesized and characterized by elemental analysis, IR, 1H NMR, UV–Vis and mass spectrophotometry. The thermodynamic formation constants of the complexes were measured spectrophotometrically, at a constant ionic strength of 0.1 M (NaClO4) at 25 °C in DMF solvent. The trend of the complex formation for nickel is as follows:  相似文献   
6.
This paper considers the problem of hybrid flowshop scheduling. First, we review the shortcoming of the available model in the literature. Then, four different mathematical models are developed in form of mixed integer linear programming models. A complete experiment is conducted to compare the models for performance based on the size and computational complexities. Besides the models, the paper proposes a novel hybrid particle swarm optimization algorithm equipped with an acceptance criterion and a local search heuristic. The features provide a fine balance of diversification and intensification capabilities for the algorithm. Using Taguchi method, the algorithm is fine tuned. Then, two numerical experiments are performed to evaluate the performance of the proposed algorithm with three particle swarm optimization algorithms available in the scheduling literature and one well-known iterated local search algorithm in the hybrid flowshop literature. All the results show the high performance of the proposed algorithm.  相似文献   
7.
Mehrdad Ghaemi  Sheida Ahmadi 《Physica A》2012,391(5):2007-2013
The critical point (Kc) of the two-layer Ising model on the Kagome lattice has been calculated with a high precision, using the probabilistic cellular automata with the Glauber algorithm. The critical point is calculated for different values of the inter- and intra-layer couplings (K1K2K3Kz), where K1, K2 and K3 are the nearest-neighbor interactions within each layer in the 1, 2 and 3 directions, respectively, and Kz is the intralayer coupling. A general ansatz equation for the critical point is given as a function of the inter- and intra-layer interactions, ξ=K3/K1,σ=K2/K1 and ω=Kz/K1 for the one- and two-layer Ising models on the Kagome lattice.  相似文献   
8.
9.
Research on Chemical Intermediates - Today the use of magnetic nanoparticles (MNPs) is widely investigated because of their biocompatibility and nontoxicity. The objective of this study was to...  相似文献   
10.
In the present work a new ligand, 2-(2-(phenyl(pyridin-2-yl)methyleneamino)ethylamino)ethanol (L), and its Zn(II) and Cd(II) complexes, [Zn(L)Br2] (1), [Cd(L)Br2] (2) and [Cd(L)I2] (3), have been synthesized and characterized by elemental analysis, FT-IR, Raman and 1H NMR spectroscopies as well as X-ray crystallography. All complexes are isostructural and their metal ions have distorted square pyramidal geometry with an MN3X2 (X: Br, I) environment. During the complexation process, the amine group of the ligand becomes a chiral center. In the solid-state, an R-configuration was observed in all three complexes. Furthermore, the molecules form intermolecular C–H?O, C–H?X and O–H?X (X: Br, I) hydrogen bonds in the solid-state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号