首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
化学   6篇
力学   1篇
物理学   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Antimicrobial activities and biofilm-formation preventive properties of Mentha piperita and Cuminum cyminum essential oils and chlorhexidine were assessed against Streptococcus mutans and Streptococcus pyogenes. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analysis led to the identification of 26 and 32 compounds in the essential oils of M. piperita and C. cyminum, respectively. Minimal bactericidal concentrations (MBC) of the oils and chlorhexidine and microbial decimal reduction time (D value) were determined. Antibacterial and in vivo biofilm preventive efficacies of all the concentrations of M. piperita oil were significantly (p<0.001) higher. The biofilm inhibitory properties in planktonic cultures were in M. piperita > chlorhexidine > C. cyminum order. In vivo experiments conducted on male and female volunteers who brushed with essential oil blended toothpastes indicated that lower concentrations of the oils, in particular the M. piperita oil, were significantly higher (p<0.001) and effective during the course of the study as compared to chlorhexidine. In conclusion, there may be a potential role for essential oils in the development of novel anticaries treatments.  相似文献   
2.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   
3.
4.
Colloidosomes are microcapsules consisting of nanoparticle shells. These microcarriers can be self‐assembled from a wide range of colloidal particles with selective chemical, physical, and morphological properties and show promise for application in the field of theranostic nanomedicine. Previous studies have mainly focused on fairly large colloidosomes (>1 μm) based on a single kind of particle; however, the intrinsic building‐block nature of this microcarrier has not been exploited so far for the introduction of tailored functionality at the nanoscale. We report a synthetic route based on interfacial shear rheology studies that allows the simultaneous incorporation of different nanoparticles with distinct physical properties, that is, superparamagnetic iron oxide and fluorescent silica nanoparticles, in a single submicron colloidosome. These tailor‐made microcapsules can potentially be used in various biomedical applications, including magnetic hyperthermia, magnetic particle imaging, drug targeting, and bioimaging.  相似文献   
5.

In the present study, the exact solution of a nanofluid flow and mixed convection within a vertical cylindrical annulus with suction/injection, which is adjacent to the radial magnetic field, is presented with regard to the motion of cylinders’ walls. The impact of Brownian motion and shape factor on the thermal state of CuO–water nanofluid is also considered. The influence of such parameters as Hartmann number, mixed convection parameter, suction/injection, volume fraction of nanoparticles and motion of cylinders’ walls on flow and heat transfer is probed. The results show that the shape of the nanoparticles could change the thermal behavior of the nanofluid and when the nanoparticles are used in the shape of a platelet, the highest Nusselt number is obtained (about 2.5% increasement of Nusselt number on internal cylinders’ wall comparison to spherical shape). The results shed light on the fact that if, for example, the external cylinder is stationary and the internal cylinder moves in the direction of z axis, the maximum and minimum heat transfer take place on the walls of internal and external cylinders, respectively (for η?=?300, about 15% increasement of Nusselt number on internal cylinders’ wall). Furthermore, the enhancement of radius ratio between two cylinders increases the rate of heat transfer and decreases the shear stress on the internal cylinder’s wall.

  相似文献   
6.
This paper studies the incorporation of Casimir and van der Waals forces applied to a nanostructure with parallel configuration. The focus of this study is in a transition region in which Casimir force gradually transforms into van der Waals force. It is proposed that in the transition region, a proportion of both Casimir and van der Waals forces, as the interacting nanoscale forces, can be considered based on the separation distance between upper structure and substrate during deflection. Moreover, as the separation distance descends during deflection, the nanoscale forces could transform from Casimir to a proportion of both Casimir and van der Waals forces and so as to van der Waals. This is also extended to the entire surface of the nanostructure in such a way that any point of the structure may be subjected to Casimir, van der Waals or a proportion of both of them about its separation distance from the substrate. Therefore, a mathematical model is presented which calculate the incorporation of Casimir and van der Waals forces considering transition region and their own domination area. The mechanical behavior of a circular nano-plate has been investigated as a case study to illustrate how different approaches to nanoscale forces lead to different results. For this purpose, the pull-in phenomena and frequency response in terms of magnitude have been studied based on Eringen nonlocal elasticity theory. The results are presented using different values of the nonlocal parameter and indicated in comparison with those of the classical theory. These results also amplify the idea of studying the mechanical behavior of nanostructures using the nonlocal elasticity theory.  相似文献   
7.
In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak–Berggren autocatalytic model.  相似文献   
8.
In the present work, hollow fiber solid-phase microextraction coupled with hydride generation–atomic fluorescence spectroscopy was employed in the extraction and determination of Arsenic(III), in water samples including acid mine drainage, gold mine wastewater and spring water of Iran. In this technique, an innovative solid sorbent containing mixture of nano TiO2 and a composite microporous compound was developed by the sol–gel method via the reaction of tetraethylorthosilicate and methyltrimethoxysilane. Sol–gel processing was done under acidic catalyst condition. The stated sol was held in the lumen of a porous polypropylene hollow fiber segment for in situ gelation procedure. The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The main factors influencing the pre-concentration and extraction of As(III) have been examined in detail. The optimized conditions were obtained and the relationship between the atomic fluorescence signal versus As(III) concentration was linear over the range of 0.01–30 μg L?1 for As(III). The limits of detection and quantification were 0.003 and 0.01 μg L?1, respectively. Under the adjusted conditions, the enrichment factor was 501.4.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号