首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   5篇
化学   64篇
数学   2篇
物理学   20篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   9篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
排序方式: 共有86条查询结果,搜索用时 0 毫秒
1.
The Ni(II) ion catalyzed thermal decomposition of peroxomonosulfate (PMS) was studied in the pH range 3.42–5.89. The rate is first order in [PMS] and Ni(II) ion concentrations. At pH greater than or equal to 5.23, the reaction becomes zero order in [PMS] and this changeover in the order of the reaction occurs at a higher concentration of nickel ions. The first‐order kinetics in PMS can be explained as a rate‐limiting step and is the transformation of nickel peroxomonosulfate into nickel peroxide. This peroxide intermediate reacts rapidly with another PMS to give oxygen and Ni(II). The formation of nickel peroxide is associated with a small negative or nearly zero entropy of activation. The zero‐order kinetics in [PMS] can be explained by the fact that the hydrolysis of aquated nickel(II) ions into hydroxocompounds is the rate‐limiting step. The turnover number is 2 at pH 3.42 and increases with pH. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 320–237, 2007  相似文献   
2.
The effect of the thallium(I) concentration on the potentiometric titration of thallium(III) with oxalic acid in 0.1M HNO3 or 0.05M H2SO4 is studied, and conditions are established for the preparation of the thallium(I) bis-oxalato diaquo thallate(III) complex. Chemical analysis of the salt corresponds to the formula T1I(T1III(C2O4)2) · 5 H2O. Thermal decomposition studies on the complex using TG, DTG and DTA techniques indicate the formation of thallium(I) oxalate (stable from 130° to 320°) as the intermediate, the final product being a mixture of thallium(I) oxide and thallium(III) oxide (stable from 520° to 600°). Infrared absorption spectra, X-ray diffraction patterns and microscopic observations are used to characterise the complex and the intermediate.  相似文献   
3.
4.
5.
We introduce the stochastic geometry of a Gaussian random ellipsoid (GE) and, with the discrete-dipole approximation, carry out preliminary computations for light scattering by wavelength-scale GE particles. In the GE geometry, we describe the base ellipsoid by the three semiaxes a?b?c. The axial ratios b:a and c:a appear as two shape parameters additional to those of the Gaussian random sphere geometry (GS). We compare the scattering characteristics of GE particles to those of ellipsoids. Introducing irregularities on ellipsoids smoothens the angular scattering characteristics, in a way analogous to the smoothening of spherical particle characteristics in the case of GS particles.  相似文献   
6.
The reaction of peroxomonosulfate (PMS) with glycolic acid (GLYCA), an alpha hydroxy acid, in the presence of Ni(II) ions and formaldehyde was studied in the pH range 4.05–5.89 and at 31°C and 38°C. When formaldehyde and Ni(II) ions concentrations are ~5.0 × 10?4 M to 10.0 × 10?4 M, the reaction is second order in PMS concentration. The rate is catalyzed by formaldehyde, and the observed rate equation is (?d[PMS])/dt = (k2[HCHO][Ni(II)][PMS]2)/{[H+](1+K2[GLYCA])}. The number of PMS decomposed for each mole of formaldehyde (turnover number) is 5–10, and the major reaction product is oxygen gas. The first step of the reaction mechanism is the formation of hemiacetal by the interaction of HCHO with the hydroxyl group of nickel glycolate. The peroxomonosulfate intermediate of the Ni‐hemiacetal reacts with another molecule of PMS in the rate‐limiting step to give the product. This reaction is similar to the thermal decomposition of PMS catalyzed by Ni(II) ions. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 642–649, 2009  相似文献   
7.
The Perkin condensation most likely occurs via the initial formation of a gem-diacetate from the aromatic aldehyde and acetic anhydride reactants. The key reactive nucleophile appears to be the enolate of the gem-diacetate rather than of acetic anhydride. The diacetate from PhCHO may be converted to cinnamic acid under a variety of (relatively) mild basic conditions.  相似文献   
8.
9.
A visual strip has been developed for sensing iron in different aqueous samples like natural water and fruit juices. The sensor has been synthesized by UV-radiation induced graft polymerization of acrylamide monomer in microporous poly(propylene) base. For physical immobilization of iron selective reagent, the in situ polymerization of acrylamide has been carried out in the presence of 1,10-phenanthroline. The loaded strip on interaction with Fe(II) in aqueous solution turned into orange red color and the intensity of the color was found to be directly proportional to the amount of Fe(II) in the aqueous sample. The minimal sensor response with naked eye was found for 50 ng mL−1 of Fe in 15 min of interaction. However, as low as 20 ng mL−1 Fe could be quantified using a spectrophotometer. The detection limit calculated using the 3s/S criteria, where ‘s’ is the standard deviation of the absorbance of blank reagent loaded strip and ‘S’ is the slope of the linear calibration plot, was 1.0 ng mL−1. The strip was applied to measure Fe in a variety of samples such as ground water and fruit juices.  相似文献   
10.
A series of unsymmetrical dimeric mesogens was prepared, members of which were composed of a 4'-pentyloxybiphenyl-4-carboxyl core and a 4'-substituted-benzylidene-4-oxyaniline core joined via an alklyene spacer. The structural variants were cyano, nitro and trifluoromethyl. Comparison of mesophase behaviour of the unsymmetrical dimers with that of corresponding monomeric 'halves' and also with that of corresponding symmetrical dimers indicated a tendency for the unsymmetrical dimers to form smectic phases although not as highly ordered as those of some of the monomers corresponding to a relevant core group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号