首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学   10篇
力学   1篇
数学   3篇
物理学   2篇
  2022年   2篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self‐assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3‐cyanopropyldimethylchlorosilane (CPDCS) or n‐octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m?2, respectively, compared to 17 ± 1 mJ m?2 for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2‐dilauroyl‐sn‐glycero‐3‐phosphocholine or 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine to CPDCS‐ or ODCS‐modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3–1.9 × 10?4 cm2 V?1s?1) compared to CPDCS‐ and ODCS‐modified or bare capillaries (3.6 ± 0.2 × 10?4 cm2 V?1s?1, 4.8 ± 0.4 × 10?4 cm2 V?1s?1, and 6.0 ± 0.2 × 10?4 cm2 V?1s?1, respectively), with increased stability compared to phospholipid bilayer coatings. HPB‐coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.  相似文献   
2.
3.
We consider a stochastic control problem where the system is governed by a non linear stochastic differential equation with jumps. The control is allowed to enter into both diffusion and jump terms. By only using the first order expansion and the associated adjoint equation, we establish necessary as well as sufficient optimality conditions of controls for relaxed controls, who are a measure-valued processes.  相似文献   
4.
Nanocomposites consisting of Au and Ag nanoparticles embedded in Teflon AF 1600 (Teflon) and Nylon 6 (Nylon) matrices were prepared by a simultaneous vapor phase deposition of both the polymer and the metal. The composite films were deposited between two Au-Pd alloy electrodes prepared by sputtering onto kapton foil substrates enabling further electrical measurements. The electrical properties of the composites are strongly influenced by the metal filling factor and changes in the microstructure. At first, the dependence of the resistivity of the composites consisting of various Ag and Au nanoparticle concentrations was investigated. The resistivity is characterized by a threshold region with a critical metal filling factor. Changes in the microstructure, in particular, can occur as a result of an induced electric field in between the metal nanoparticles and a heat treatment. The I–V characteristics of Teflon AF composites for different Au concentrations were studied thoroughly. An increase in the slope of the I–V curve up to a certain voltage (breakdown voltage) was observed. This phenomenon is accompanied by the field induced tunneling of the charge carriers which enhances the conductivity. The change in conductivity was also analyzed for Nylon nanocomposites with various Au concentrations in the temperature range 20–180 °C. The observed temperature dependence is explained by activated electron tunneling between metal nanoparticles and by rearrangements in the microstructure (e.g. coalescence of metal nanoparticles). PACS  78.67.-n; 78.67.Bf  相似文献   
5.
Phosphorylcholine (PC) based phospholipid bilayers have proven useful as capillary coating materials due to their inherent resistance to non-specific protein adsorption. The primary limitation of this important class of capillary coatings remains the limited long-term chemical and physical stability of the coatings. Recently, a method for increasing phospholipid coating stability in fused silica capillaries via utilization of polymerized, synthetic phospholipids was reported. Here, we expand upon these studies by investigating polymerized lipid bilayer capillary coatings with respect to separation performance including run-to-run, day-to-day and column-to-column reproducibility and long-term stability. In addition, the effects of pH and capillary inner diameter on polymerized phospholipid coated capillaries were investigated to identify optimized coating conditions. The coatings are stabilized for protein separations across a wide range of pH values (4.0–9.3), a unique property for capillary coating materials. Additionally, smaller inner diameter capillaries (≤50 μm) were found to yield marked enhancements in coating stability and reproducibility compared to wider bore capillaries, demonstrating the importance of capillary size for separations employing polymerized phospholipid coatings.  相似文献   
6.
In this paper, the first integral method and the functional variable method are used to establish exact traveling wave solutions of the space–time fractional Schrödinger–Hirota equation and the space–time fractional modified KDV–Zakharov–Kuznetsov equation in the sense of conformable fractional derivative. The results obtained confirm that proposed methods are efficient techniques for analytic treatment of a wide variety of the space–time fractional partial differential equations.  相似文献   
7.
A modified traditional preparative chromatographic column can be used to achieve quantitative N-dearylation of N-(alkoxyphenyl), N-(alkoxynaphthyl), and N-(alkoxybenzyl)-2-azetidinones under mild conditions. Starting materials are charged on top of the column and the pure N-unsubstituted 2-azetidinones leave the column minutes later without need for other purifications. The yields are good-to-excellent and the reaction condition is mild, easy, efficient, and cheap.  相似文献   
8.
In this paper, the gravitational effect of a fourth body on the resonance orbit defined in the restricted three-body problem (RTBP) is considered. In this regard, Resonance Hamiltonian of the RTBP and the Hamiltonian associated with the fourth gravitational body that perturbs the resonance orbit are computed. The Melnikov approach is utilized as a mean for the detection of chaos in resonance orbit under the influence of the fourth gravitation body. In addition, the numerical simulation of RTBP and bicircular four-body model, time–frequency analysis (TFA), and fast Lyapunov indicator (FLI) are performed to verify the results of the Melnikov approach. The results indicate that for the (2:1) resonance orbit, the Melnikov integral computed over outer loop of separatrix does not cross the zero line, and consequently chaos is unexpected. On the other hand, the Melnikov integral computed over the inner sepratrix loop crosses the zero line indicating a potential for chaos. Similarly, it is shown that inclusion of the fourth body gravitation leads the (3:1) as well as the (4:1) resonance orbits to chaos. Additionally, simulation results indicate that for some initial conditions on the separatrix, the fourth body effect bounds the amplitude of the resonance orbits while diffusing its corresponding trajectory in the bounded phase space. TFA and the FLI verify similar results.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号