首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3216篇
  免费   223篇
  国内免费   15篇
化学   2323篇
晶体学   13篇
力学   67篇
数学   454篇
物理学   597篇
  2023年   54篇
  2022年   76篇
  2021年   119篇
  2020年   167篇
  2019年   187篇
  2018年   85篇
  2017年   71篇
  2016年   202篇
  2015年   151篇
  2014年   167篇
  2013年   203篇
  2012年   281篇
  2011年   275篇
  2010年   159篇
  2009年   132篇
  2008年   202篇
  2007年   164篇
  2006年   155篇
  2005年   104篇
  2004年   67篇
  2003年   43篇
  2002年   41篇
  2001年   31篇
  2000年   20篇
  1999年   18篇
  1998年   15篇
  1997年   8篇
  1996年   14篇
  1995年   17篇
  1994年   14篇
  1993年   6篇
  1992年   12篇
  1991年   7篇
  1990年   10篇
  1989年   5篇
  1988年   13篇
  1987年   11篇
  1986年   14篇
  1983年   4篇
  1982年   7篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   7篇
  1973年   5篇
  1970年   4篇
  1909年   4篇
  1903年   3篇
  1888年   3篇
  1887年   3篇
排序方式: 共有3454条查询结果,搜索用时 0 毫秒
1.
Pyranosyl‐RNA (‘p‐RNA’ ) is an oligonucleotide system isomeric to natural RNA and composed of the very same building blocks as RNA. Its generational, chemical, and informational properties are deemed to be those of an alternative nucleic acid system that could have been a candidate in Nature's evolutionary choice of the molecular basis of genetic function. We consider the study of the chemistry of p‐RNA as etiologically relevant in the sense that knowledge of its structural, chemical, and informational properties on the chemical level offers both a perspective and reference points for the recognition of specific structural assets of the RNA structure that made it the (supposedly) superior system among possible alternatives and, therefore, the system that became part of biology as we know it today. The paper describes the chemical synthesis of β‐d‐ (and L )‐ribopyranosyl‐(4′→2′)‐oligonucleotide sequences, presents a resume of their structural and chemical properties, and cautiously discusses what we may and may not have learned from the pyranosyl isomer of RNA with respect to the conundrum of RNA's origin.  相似文献   
2.
3.
Possible industrial applications of excimer lasers are discussed.  相似文献   
4.
T /nS of nT rearrangements and nS atoms in the spike volume as the crucial parameter characterizing the ability of a given ion–target combination to achieve complete rearrangement of the spike volume. nT/nS>1 is the optimum condition for diamondlike film growth. For aC films the ion energy dependence of nT/nS agrees well with the measured sp3 bond fraction. For Ar+-ion-assisted deposition of aC we find nT/nS>1 above 50 eV with no pronounced ion energy dependence. Furthermore, our model predicts optimum conditions for the formation of cubic boron nitride between 50 eV and 3 keV. Accepted: 14 October 1997  相似文献   
5.
Synthesis and X-Ray Structure Analysis of the 8π-Electron-Ring-System S4N4O2Sn2(CH3)6 and the Magnetic Properties of S4N4O2 and S8N8O4 S4N4O2 reacts with N[Sn(CH3)3]3 in a molar ratio of 1:1 to an eight-membered trimethyltin-substituted 8π-electron skeleton, S4N4O2Sn2(CH3)6. In contrast to known 6π-electronsystems this compound has tin atoms which are tetracoordinated. This was demonstrated on the basis of an x-ray analysis. S4N4O2Sn2(CH3)6 · 1/2 C6H6 crystallizes in the space group P21/c with a = 1396.0(4), b = 1190.3(4), c = 1256.7(3) pm, and β = 103.46(2)°. It was shown that the ability of coordination at the tin atom depends on the electron density. The magnetic properties of S4N4O2 and S8N8O4 were investigated by the Faraday method. The high diamagnetism in these ring compounds is caused by the π-electrons.  相似文献   
6.
57Fe electric and magnetic hyperfine parameters were calculated for a series of 10 iron model complexes, covering a wide range of oxidation and spin states. Employing the B3LYP hybrid method, results from nonrelativistic density functional theory (DFT) and quasi-relativistic DFT within the zero-order regular approximation (ZORA) were compared. Electron densities at the iron nuclei were calculated and correlated with experimental isomer shifts. It was shown that the fit parameters do not depend on a specific training set of iron complexes and are, therefore, more universal than might be expected. The nonrelativistic and quasi-relativistic electron densities gave fit parameters of similar quality; the ZORA densities are only shifted by a factor of 1.32, upward in the direction of the four-component Dirac-Fock value. From a correlation of calculated electric field gradients and experimental quadrupole splittings, the value of the 57Fe nuclear quadrupole moment was redetermined to a value of 0.16 barn, in good agreement with other studies. The ZORA approach gave no additional improvement of the calculated quadrupole splittings in comparison to the nonrelativistic approach. The comparison of the calculated and measured 57Fe isotropic hyperfine coupling constants (hfcc's) revealed that both the ZORA approach and the inclusion of spin-orbit contributions lead to better agreement between theory and experiment in comparison to the nonrelativistic results. For all iron complexes with small spin-orbit contributions (high-spin ferric and ferryl systems), a distinct underestimation of the isotropic hfcc's was found. Scaling factors of 1.81 (nonrelativistic DFT) and 1.69 (ZORA) are suggested. The calculated 57Fe isotropic hfcc's of the remaining model systems (low-spin ferric and high-spin ferrous systems) contain 10-50% second-order contributions and were found to be in reasonable agreement with the experimental results. This is assumed to be the consequence of error cancellation because g-tensor calculations for these systems are of poor quality with the existing DFT approaches. Excellent agreement between theory and experiment was found for the 57Fe anisotropic hfcc's. Finally, all of the obtained fit parameters were used for an application study of the [Fe(H2O)6]3+ ion. The calculated spectroscopic data are in good agreement with the Mossbauer and electron paramagnetic resonance results discussed in detail in a forthcoming paper.  相似文献   
7.
Nitrilotris(methylenephosphonic acid) (NTP, [N(CH(2)PO(3)H(2))(3)]) recently has been found to form three-dimensional porous structures with encapsulation of templates as well as layered and linear structures with template intercalation. It was, therefore, of interest to examine the type of organic-inorganic hybrids that would form with metal cations. Mn(II) was found to replace two of the six acid protons, while a third proton bonds to the nitrilo nitrogen, forming a zwitter ion. Two types of compounds were obtained. When the ratio of acid to Mn(II) was less than 10, a trihydrate, Mn[HN(CH(2)PO(3)H)(3)(H(2)O)(3)] (2) formed. Compound 2 is monoclinic P2(1)/c, with a = 9.283(2) A, b = 16.027(3) A, c = 9.7742(2) A, beta = 115.209(3) degrees, V = 1315.0(5) A(3), and Z = 4. The Mn atoms form zigzag chains bridged by two of the three phosphonate groups. The third phosphonate group is only involved in hydrogen bonding. The metal atoms are octahedrally coordinated with three of the sites occupied by water molecules. Adjacent chains are hydrogen-bonded to each other through POH and HN donors, and the additional participation of all the water hydrogens in H-bonding results in a corrugated sheet-like structure. Use of excess NTP at a ratio to metal of 10 to 1 yields an anhydrous compound Mn[HN(CH(2)PO(3)H)(3)] (1), P2(1)/n, a = 9.129(1) A, b = 8.408(1) A, c = 13.453(1) A, beta = 97.830(2) degrees, V = 1023.0(2) A(3), and Z = 4. Manganese is five coordinate forming a distorted square pyramid with oxygens from five different phosphonate groups. The sixth oxygen is 2.85 A from an adjacent Mn, preventing octahedral coordination. All the protonated atoms, three phosphonate oxygens and N, form moderately strong hydrogen bonds in a compact three-dimensional structure. The open-structured trihydrate forms a series of isostructural compounds with other divalent transition metal ions as well as with mixed-metal compositions. This is indicative that the hydrogen bonding controls the type of structure formed irrespective of the cation.  相似文献   
8.
9.
We present a novel algorithm of constrained, overdamped dynamics to study the long-time properties of peptides, proteins, and related molecules. The constraints are applied to an all-atom model of the molecule by projecting out all components of the nonbonding interactions which tend to alter fixed bond lengths and angles. Because the overdamped dynamical equations are first order in time, the constraints are satisfied by inversion of a banded matrix at each timestep, which is computationally efficient. Thermal effects are included through a Langevin noise term in the equation of motion. Because high-frequency components of the motion have been eliminated, the timestep of the algorithm is determined by the nonbonding forces, which are two to three orders of magnitude weaker than the bonding forces. Using polyalanine as a test example, we demonstrate that trajectories simulating a microsecond of motion can be run about 103 times faster than an equivalent molecular dynamics simulation. © 1994 by John Wiley & Sons, Inc.  相似文献   
10.
By injection of the proton bound homodimer [DMF.H+.DMF] of N,N-dimethylformamide (DMF) generated in an external ion source into a mixture of DMF and a second base within the cell of a Fourier transform ion cyclotron resonance (FT-ICR) spectrometer the equilibria between [DMF.H+.DMF] and the other possible proton bound dimers [DMF.H+.base] and [base.H+.base] have been studied for 13 different bases. Strongly polar bases like aliphatic amides and dimethyl sulfoxide (DMSO) exchange both DMF in [DMF.H+.DMF] by a two step process, while the almost non-polar amines exchange only one DMF. If the base is a primary or secondary amine, the proton bound heterodimer [DMF.H+.amine] reacts further by the addition of one DMF to create a proton bound trimer [(DMF)2.H+.amine]. The affinity deltaG(DMFH+) of the bases towards protonated DMF relative to neutral DMF depends linearly on the difference deltaGB of the gas phase basicity of DMF and the other base, but different correlation lines are obtained for polar and non-polar ligands (deltaGDMFH+ = 0.44GB(base)-375 [kJ/mol] (r = 0.97) and deltaGDMFH+ = 0.46GB(base)-397 [kJ/mol] (r = 0.99), respectively). This different behavior is explained by a different character of the proton bridge in the heterodimers containing only polar ligands and those incorporating a non-polar ligand besides DMF. The former dimers contain a more or less symmetric proton bridge while the latter can be viewed as a protonated base solvated by DMF. The available data have been used to calculate the molecular pair gas phase basicity of DMF and the 13 bases used and to estimate the dissociation energies of the bonds of the proton bridge in various proton bound heterodimers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号